

Rectangular Mask Payload Metadata
within the QuickTime Movie File
Format
Format additions

Version 0.9 (Beta)
June 9, 2025

Note: The information contained within this document is
preliminary and is subject to change.

 
 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of

 Apple Inc., registered in the U.S. and other countries.

June 9, 2025

Introduction ..3
Overview ...3
References ..4
Motivations and goals of rectangular masks ..4

Characterizing the mask area of an associated video frame ...4
Suitable for stereo video with or without window violations ..4
Separation of mask shape from encoded video sample ..5
Differing aspect ratios ..5
Integrating time ...6
Client and production usage ...8

Rectangular mask value and metadata carriage ...8
1. Raster rectangle value payload definition ..8
1.1. Syntax ...8

2. Semantics ...9
1.3.Policy for working with RasterRectangleValues mathematically 13
1.4.Carriage as timed metadata ..14

Conclusion ..15
Document Revision History ...16

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 2

June 9, 2025 0.9 (Beta)

Introduction
Decoded video frames are most typically shown in their entirety to the viewer; the video’s
bounding rectangle never changes. Creators may, however, want to present less than the full
encoded frame (e.g., for the effect of a transition between two aspect ratios that establish a
sense of era, such as between a widescreen theatrical aspect ratio and a legacy 4:3 television
aspect ratio). This can be accomplished today by encoding to a fixed resolution and using
letterbox and/or pillarbox “black bars” that are still shown on the projection screen or display.
New display technologies offer new creative opportunities, such as treating these black bars as
transparent. Such a creative effect could be accomplished if there existed a way to signal a
current rectangular limit on what is shown. If that rectangular area changes as video plays, the
display system could treat areas beyond the area as transparent. This document does not
prescribe the visual treatment a player uses in its interpretation of this rectangular area, also
known as a rectangular mask. Rather, this document specifies the structure of a timed metadata
payload that can indicate a fixed or changing rectangular area extracted from otherwise
constant-sized decoded video.
This payload can be carried in metadata items in media samples within QuickTime File Format
[QTFF] timed metadata or ISOBMFF [ISOBMFF] multiplexed metadata. Both of these use the
'mebx' handler type of the 'meta' track type. The payloads can also occur in fragmented movie
files in both QTFF and ISOBMFF. Although this specification is focused on use within a timed
metadata track, the construct itself should be applicable elsewhere in the format.
The document begins with motivations and goals of the payload definition. This is followed by
details of the format definition itself, including use of it to describe payload design details and
key-related information for carrying this masking rectangle.

Overview
Traditionally, video is prepared at a particular resolution (e.g., 1080p, 4K) and later shown on a
two-dimensional display, scaling larger or smaller as needed to fit the display area. This typically
targets consumer devices such as iPhone, iPad and Mac, displays attached to desktops, and
televisions. Video might also be displayed on a very large screen, such as in a cinema, or on a
conference presentation stage. Today, it might also be shown as 2D video within the spatial
environment established by a spatial computer, such as the Apple Vision Pro.
Those producing the video might prepare the content so it has a different aspect ratio (the ratio
of width to height) from the display device. For common cases, such as 16:9 (said as “16 by 9”)
or 4:3, displays may be sized so the video scaled to the aspect ratio doesn’t leave any space
beyond the video. In other cases, an encoded aspect ratio such as 16:9 might be displayed
where extra, unaccounted-for space might abut some edges. This can manifest as black bars at
the top and bottom (termed letterboxing) or the left and right (termed pillarboxing). For
traditional 2D displays, any unaccounted-for area up to the display’s physical edges needs to be
filled, either explicitly (by painting a constant color such as black) or with whatever the device
display shows there.
Sometimes the encoded video might need to target a well-known aspect ratio, such as 4:3,
whereas the source for encoding is another aspect ratio (e.g., 16:9 or a theatrical aspect ratio).
This difference requires the video production to bake in the letterbox or pillarbox treatment.
 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 3

June 9, 2025 0.9 (Beta)

A more dynamic creative choice, used by some theatrical filmmakers or other creatives, is
producing video that changes the active area as playback proceeds. For example, to signal a
shift in era, a filmmaker might transition from a modern aspect ratio, like 16:9, to the 4:3 aspect
ratio used on TV in the 1950s or 1960s. On traditional displays, the margins around the active
area change as the transition proceeds.
For a device such as Apple Vision Pro, there is a new choice: the area beyond the encoded
video’s active area, up to the encoded edges, can be treated as transparent, with pass-through
visibility to the immersed environment. In this case, there is no reason to present the black bars
required for more traditional displays.
Signaling such a static or changing bounding area subset of the video needs a mechanism. That
mechanism might carry a single rectangle that can be held constant or can change as the video
plays. That rectangle could be used to display an indicated subset of each corresponding video
frame.
This document describes a structure that indicates a rectangle suitable for a particular
resolution and how that is carried in the timed metadata format of the QuickTime File Format
[QTFF] and the ISO Base Media Format [ISOBMFF]. It introduces something called a
rectangular mask.

Note: This document uses the ISOBMFF specification syntax [ISOBMFF] and uses the QTFF
term atom interchangeably with the ISO term box. When describing syntax and
constructs, box is used. Although these constructs are likely most applicable to timed
metadata items, they might prove useful in other parts of the file formats.

Note: The words may, should, and shall are used in the conventional specification sense—
that is, respectively, to denote permitted, recommended, or required behaviors.

References
This document references these external specifications:

[QTFF] QuickTime File Format specification
[ISOBMFF] ISO Base Media File Format, or sometimes ISOBMFF, as specified in ISO/IEC

14496-12 (2020)

Motivations and goals of rectangular masks
Characterizing the mask area of an associated video frame
Characterizing features of areas of the video frame may prove useful or important for particular
rendering or UI treatments, such as indicating a rectangular area that should be displayed but
having a different treatment for any area of the video frame that extends beyond this masking
rectangle. Although this document is focused on a masking rectangle, the construct described
here is more general and could apply to other purposes, such as indicating an area of interest
within the frame.

Suitable for stereo video with or without window violations

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 4

June 9, 2025 0.9 (Beta)

Stereo video uses two image buffers, presenting one image to the viewer’s left eye and the
second image to the viewer’s right eye. For the stereo case, a separate rectangular mask for
each viewer eye may be desired. This specification also describes how that carriage can be
achieved.
With stereo video, a phenomenon can occur where differences between what the two eyes see
in emergent elements at the view edges can produce viewing-comfort issues. In theatrical 3D
content production, this is sometimes addressed by painting rectangular or even trapezoidal
areas at the offending edge so the eyes do not discern a difference. The literature goes into
detail about the need to address window violations with techniques such as floating windows.
This specification describes how to signal a pair of rectangular masks suitable for
corresponding stereo frames. It also describes a different payload that indicates a constrained
trapezoid meant to be suitable for indicating where a window violation should be masked.

Separation of mask shape from encoded video sample
The rectangular mask metadata design described here will typically be carried in a timed
metadata track (i.e., the ‘mebx’ media subtype format described in QTFF and in ISOBMFF).
Although an alternative might have been to include the mask rectangle semantics in a
Supplemental Enhancement Information (SEI) message, the use of timed metadata and
separation of the rectangle from the encoded video frame offers benefits including:
- Multiple metadata tracks with different masks can be associated with the video track (e.g., for

fine-tuning placement).
- New mask metadata can be introduced without needing to rewrite the video.
- Because it is not in the encoded video, the video mask(s) can be delivered to the client

without requiring delivery and decode (or even scanning) of the encoded video frames.
- Because it is not in the encoded video, different resolutions of video can be encoded and

used with the same rectangular mask metadata. This might be useful in streaming tiers
differing by resolution.

- The same metadata sample and its mask can be applied to more than one video sample if the
area is the same or deemed sufficiently similar.

While rectangular masks are most likely to be used with timed metadata tracks, the design
should be able to be used with static metadata as an item so long as no timing is signaled in the
metadata item payload.
Differing aspect ratios
Differing standard-size aspect ratios can be described by using rectangular masks—such as a
16:9 active area within a 4:3 encoded video frame (letterboxing), or a 4:3 active area within a
16:9 encode video frame (pillarboxing)—and transitioning between the two.

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 5

June 9, 2025 0.9 (Beta)

Fig 1. 16:9 within 4:3 and 4:3 within 16:9

Note: Per-frame rectangular mask metadata targets creative cases where the size and
location of a portion of the encoded video changes as video plays. If, however, the
size of the active area is constant across the video’s duration, a traditional clean
aperture can be used. Or the video can be encoded to a smaller static size without
needing a clean aperture. Modern playback takes care to center the encoded video as
necessary.

It’s probably useful to think of the encoded frame size as a canvas in which a rectangular area
can change, exposing a subset of the video. One use might be to introduce a portion of the
video at a location on the display and expand the rectangle to show more of the scene, all while
keeping the location of elements stable despite more being exposed.

Fig 2. Encoded video with mask being changed toward edges

The shape of the rectangular mask does not need to conform to an established aspect ratio
such as 16:9 or 4:3. And the area exposed can be any part of the canvas established by the
encoded video dimensions.

Fig 3. Encoded video as canvas with mask being changed to expose more

Integrating time

4:3 16:94:3
16:9

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 6

June 9, 2025 0.9 (Beta)

Video rectangular mask metadata items are carried as timed metadata track samples. Each
metadata sample can correspond to one video sample’s presentation time and duration, or it
can correspond to more than one video sample. The duration of the mask metadata samples
should be the maximum time interval corresponding to whole video frames where the mask
metadata is held constant. This metadata interval should be no less than one video frame and it
can extend up to the duration of the corresponding video track.
This specification focuses on movie file carriage and does not prescribe rules for derived use
cases, such as streaming segmentation, that may need to restrict the time range of metadata
samples. Where those derived use cases need to split a long-duration metadata sample, a
longer-duration mask metadata sample described here can be duplicated, with the earlier and
later samples retimed to account for the overall duration. Such splitting may require
consideration of other metadata items in the metadata sample, and their suitability for being
duplicated in the same way. Currently, no other metadata requires special treatment when being
split and retimed.

Fig 4. Video and associated timed metadata (1:1 and longer duration)

Because a metadata sample can span multiple video frames in a movie file, it is recommended
to have one metadata sample with a mask rectangle that covers all consecutive video frame
samples. HTTP Live Streaming (HLS) segmentation may split such a run of consecutive
metadata samples to align with segmentation boundaries identified for the corresponding video
frames. If there is any change in masks from frame to frame, a new metadata sample run is
required at each change. Even if the same mask is possible across a span of video frame times,
you should write longer-duration metadata samples in a direct relationship with the
corresponding video frame samples.

Because per-frame rectangular metadata (PFRM) usage is tied to a corresponding video sample
or samples, it is recommended that the metadata items for PFRM be kept in a timed metadata
(mebx coding type) that does not hold other kinds of timed metadata. Additionally, the timed
metadata track should carry a 'rndr' track reference so that the PFRM metadata is tightly
coordinated with concurrent video frame delivery. Moreover, because the duration of PFRM
metadata may extend beyond one video frame, PFRM metadata should be carried in a separate
timed metadata track from the track that another, more fine-grained (1:1) or more loosely
grained (1:N) timed metadata might use.

Video

Metadata

Video

held for 2 video samples held for 3 video samplesMetadata

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 7

June 9, 2025 0.9 (Beta)

Client and production usage
The use of rectangular mask metadata might be different in production and client delivery.
As an example, in a first pass, production might analyze each video frame for any encoded
letterbox or pillarbox bands and then produce associated timed metadata samples
characterizing the corresponding video frames. The first pass might alternatively use sideband
information to generate the timed metadata. Subsequent passes might produce metadata that
integrates longer time ranges of already determined mask rectangles, up to the point where it
might be constant across the whole video. In this way, the mask metadata described here is
both generated, and used as source for generating “optimized” mask metadata.
Client-delivered metadata must exist and be interleaved with the video for each tier resolution in
a streaming asset when it applies to the video. The timed mask metadata may be specialized for
each tier video resolution, or the timed mask metadata may use a common tier resolution that
will be scaled for the tier resolution. Guidance on specializing the mask metadata resolution for
each tier or choosing a suitable single resolution to target is not described in this specification.
Separate authoring guidelines or other policy can describe that.

Rectangular mask value and metadata carriage
This section describes the structure of the rectangular area and its use as timed metadata.

1. Raster rectangle value payload definition
This section describes the RasterRectangleValue, a value to describe a rectangular area
contained with a larger, two-dimensional pixel-based area.

1.1. Syntax
aligned(8) class RasterRectangleValue {
 unsigned int(16) reference_raster_width;
 unsigned int(16) reference_raster_height;
 unsigned int(16) rectangle_left;
 unsigned int(16) rectangle_width;
 unsigned int(16) rectangle_top;
 unsigned int(16) rectangle_height;
}

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 8

June 9, 2025 0.9 (Beta)

aligned(8) class ExtendedRasterRectangleValue extends RasterRectangleValue
{
 unsigned int(4) left_edge_point_count; // up to 15 edge points along
left edge
 unsigned int(4) right_edge_point_count; // up to 15 edge points along
right edge
 {
 unsigned int(16) inset_x;
 unsigned int(16) inset_y;
 } left_edge_points [left_edge_point_count];
 {
 unsigned int(16) inset_x;
 unsigned int(16) inset_y;
 } right_edge_points [right_edge_point_count];
}

2. Semantics
RasterRectangleValue is a structure that specifies a pixel-accurate rectangular
area with reference to a containing raster resolution (i.e., horizontal pixels by vertical
pixels). The value carries both a raster resolution (width and height in pixels) and a
contained rectangular area. That rectangle is defined by an origin and size. This
geometry value is for general use, and the rectangle applies to the specified resolution
but can also be scaled to alternate resolutions. The structure’s byte ordering is big
endian (in other words, network byte order) to be consistent with that of QTFF and
ISOBMFF constructs.
- reference_raster_width and reference_raster_height measure a 2D raster in

pixels. This reflects the dimensions of a decompressed pixel buffer or the resolution of an
output device. This defines a coordinate system with a left-top origin of 0,0 and a width of
reference_raster_width and height of reference_raster_height.

- The rectangle itself is specified by the four other fields of RasterRectangleValue:
rectangle_left, rectangle_width, rectangle_top and rectangle_height. The
interpretation of the coordinates is established by the associated
reference_raster_width and reference_raster_height fields.
- rectangle_left is the horizontal pixel offset from the left of the bounding raster.

Because the bounding raster’s left edge is at 0 pixels, this is 0 if at the left.
- rectangle_width is the width of the rectangle, from rectangle_left to the

rectangle’s right edge within the bounding raster.
- rectangle_top is the vertical pixel offset from the top of the bounding raster. Because

the bounding raster’s top edge is at 0 pixels, this is 0 if at the top.
- rectangle_height is the height of the rectangle, from rectangle_top to the

rectangle’s bottom edge within the bounding raster.

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 9

June 9, 2025 0.9 (Beta)

Fig 5. RasterRectangleValue rectangle within referenced raster

Note: A RasterRectangleValue‘s rectangle is tied to a particular resolution
indicated by the reference_raster_width and
reference_raster_height fields. If the video frame’s resolution
matches the value’s resolution, the rectangle values can be used directly.
If the resolutions differ, the ratios of the current
reference_raster_width and reference_raster_height fields
to the other RasterRectangleValue’s resolution can be used to scale
the origin and size between this and the other rectangle.

To address window violations, a variation of RasterRectangleValue is described.
Toward that end, ExtendedRasterRectangleValue is introduced. This value is an
extension of RasterRectangleValue, with additional fields to introduce horizontal
insets on the left and right edges.
- The rectangle itself is specified by the four fields of RasterRectangleValue:
rectangle_left, rectangle_width, rectangle_top and rectangle_height.
More complex edge geometry is produced by using additional insets using the
left_edge_points[] and/or right_edge_points[] array fields.

A common case might be a vertical but inset left edge and/or with a vertical but inset right
edge. Toward this end, we can introduce for the purpose of this section abstract, or virtual,
fields named top_left_inset, bottom_left_inset, top_right_inset, and
bottom_right_inset. These are not actual fields in
ExtendedRasterRectangleValue but can be expressed as equivalents of fields that are
present.
- A virtual top_left_inset is the horizontal pixel offset from the top-left corner of the

specified rectangle toward the right. A value of 0 indicates no offset. This would be

rectangle_height

reference_raster_width

re
fe
re
nc

e_
ra
st
er
_h

eig
ht

Raster Rectangle

rectangle_top

rectangle_left

rectangle_width

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 10

June 9, 2025 0.9 (Beta)

expressed by setting left_edge_points[0].inset_x to the virtual
top_left_inset value and left_edge_points[0].inset_y set to 0.

- A virtual bottom_left_inset is the horizontal pixel offset from the bottom-left corner
of the specified rectangle toward the right. A value of 0 indicates no offset. This would be
expressed by setting left_edge_points[left_edge_point_count-1].inset_x
to the virtual top_left_inset value and
left_edge_points[left_edge_point_count-1].inset_y set to
rectangle_height.

- A virtual top_right_inset is the horizontal pixel offset from the top-right corner of the
specified rectangle toward the left. A value of 0 indicates no offset. This would be
expressed by setting right_edge_points[0].inset_x to the virtual
top_right_inset value and right_edge_points[0].inset_y set to 0.

- A virtual bottom_right_inset is the horizontal pixel offset from the bottom-right
corner of the specified rectangle toward the left. A value of 0 indicates no offset. This
would be expressed by setting
left_edge_points[right_edge_point_count-1].inset_x to the virtual
bottom_right_inset value and
left_edge_points[right_edge_point_count-1].inset_y should be set to
rectangle_height.

rectangle_height

reference_raster_width

re
fe

re
nc

e_
ra

st
er

_h
eig

ht

Raster Rectangle

rectangle_top

rectangle_left

rectangle_width

top left

top_left_inset

bottom left

bottom_left_inset

top right

top_right_inset

bottom right

bottom_right_inset

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 11

June 9, 2025 0.9 (Beta)

Fig 6. RasterRectangleValue rectangle within referenced raster

Although an ExtendedRasterRectangleValue with 0 for all of inset_x fields of
left_edge_points[] elements and right_edge_points[] elements is semantically
equivalent to RasterRectangleValue, the simplest type should be used to describe the
necessary geometry.

Note: The misuse of insets might produce self-intersection with the
RasterRectangleValue geometry. Such geometry should be avoided, and
its use is undefined.

left_edge_point_count, right_edge_point_count: If a vertical edge has any inset
other than 0 across its height, this field should indicate the number of insets on that edge. If
there is no inset other than at the top and bottom, *_edge_point_count should be 0.
Otherwise, there should be that many elements in the left_edge_points and
right_edge_points arrays. If both count fields are set to zero (0),
RasterRectangleValue can be used instead of ExtendedRasterRectangleValue.
ExtendedRasterRectangleValue
left_edge_point_count indicates the count of needed insets for the left edge.
right_edge_point_count indicates the count of needed insets for the right edge.
left_edge_points, right_edge_points: An array of elements indicating the offset along
the respective edge of the ExtendedRasterRectangleValue. Each element is a structure
of two fields:

inset_x: An unsigned offset (0 or positive) from the respective edge toward the other
edge. For left_edge_points, the inset is toward the right. For
right_edge_points, the inset is toward the left. These inset values shall never
be as large as rectangle_width.

inset_y: An unsigned offset (0 or positive) from the top edge toward the bottom edge. All
inset_y values are measured from the top edge. Inset values shall be within the
range of 0 to rectangle_height. They are not delta values. Subsequent
elements shall be monotonically increasing (i.e., never regress or even be
coincident with the immediately previous element's inset_y).

The use of left_edge_point_count and left_edge_points allows for both complex contours and a
simple vertical line. A line from the top-left corner to the bottom-left corner could be described
with these field values:
 left_edge_point_count = 2
 left_edge_points[0].inset_x = 0, left_edge_point[0].inset_y = 0
 left_edge_points[1].inset_x = 0, left_edge_point[1].inset_y = rectangle_height.
A line from the top-right corner to the bottom-right corner, coincident with the right edge, could
be described with these field values:
 right_edge_point_count = 2
 right_edge_points[0].inset_x = 0, right_edge_point[0].inset_y = 0
 right_edge_points[1].inset_x = 0, right_edge_point[1].inset_y = rectangle_height.

Although using *_edge_points arrays is possible in these cases, writers should instead use
the edge already specified by the RasterRectangleValue's base rectangle-related fields,
 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 12

June 9, 2025 0.9 (Beta)

set left_edge_point_count or right_edge_point_count to 0, and not include any
elements. Only use *_edge_points if the geometry differs from an edge.

1.3. Policy for working with RasterRectangleValues mathematically

The client reader receiving and processing mask metadata should be prepared for a
number of situations in determining what is within the specified masked area and, by
implication, what is outside the specified masked area.
- If the current image buffer has the same resolution as that specified in the
RasterRectangleValue resolution (i.e., reference_raster_width and
reference_raster_height), the coordinates of the embedded rectangle (i.e.,
rectangle_left, rectangle_top, rectangle_width, and
rectangle_height) can be used directly.

- If the current image buffer resolution does not match the RasterRectangleValue
resolution, the client should scale the rectangle geometry (_left, _top, _width,
and _height) between the metadata item’s RasterRectangleValue resolution
and the current image buffer resolution.

- The width and/or height may collapse to 0 and make the geometry empty, or they can
be specified as 0. This is valid and should be interpreted as the equivalent of an
alpha-based image having no visible pixels, because all alpha is transparent. For
rectangular and trapezoidal masks, the area within the geometry should be treated as
opaque and pixels outside the mask as transparent. The reader performing rendering
can treat the edge of the geometry as a hard cut between opaque and fully
transparent, with no obligation (or affordance) for indicating the edge is antialiased or
feathered, or otherwise specially treated. If the rectangle extends beyond the raster,
all pixels beyond the raster should be clipped (ignored). Only the image buffer within
the raster dimensions contributes pixels to be displayed.

Given: image_buffer_width // width of the current image buffer
 image_buffer_height // height of the current image buffer
 current_raster_rectangle // RasterRectangleValue read from
metadata item
 mask_left, mask_top, mask_width, mask_height // to be
calculated

If ((image_buffer_width ==
current_raster_rectangle.reference_raster_width) &&
image_buffer_height ==
current_raster_rectangle.reference_raster_height)) {
 mask_left = current_raster_rectangle.rectangle_left;

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 13

June 9, 2025 0.9 (Beta)

 mask_top = current_raster_rectangle.rectangle_top;
 mask_width = current_raster_rectangle.rectangle_width;
 mask_height = current_raster_rectangle.rectangle_height;
} else { // scale the geometry, avoiding integer division
collapsing to zero (0)
 mask_left = (image_buffer_width /
current_raster_rectangle.reference_raster_width) *
current_raster_rectangle.rectangle_left;
 mask_top = (image_buffer_height /
current_raster_rectangle.reference_raster_height) *
current_raster_rectangle.rectangle_top;
 mask_width = (image_buffer_width /
current_raster_rectangle.reference_raster_width) *
current_raster_rectangle.rectangle_width;
 mask_height = (image_buffer_height /
current_raster_rectangle.reference_raster_height) *
current_raster_rectangle.rectangle_height;
}

// use mask_left, mask_top, mask_width, mask_height as shape
// for pixels to include (or pass through) from the image
buffer
1.4. Carriage as timed metadata
The RasterRectangleValue and the ExtendedRasterRectangleValue derived from it are
each a big-endian structure.
When carried in ‘mebx’ timed metadata [QTFF, ISOBMFF], the per-frame rectangular mask
metadata is carried as either a RasterRectangleValue or an
ExtendedRasterRectangleValue item using one of the following keys and value definitions:

Note1: BE refers to big-endian.
Note2: ISOBMFF does not currently support signaling data types like QTFF does.
Note3: For mono, a RasterRectangleValue is used because there is no expectation that
additional edge geometry is needed.
Note4: ExtendedRasterRectangleValue may be limited in size to that of
RasterRectangleValue if no additional edge geometry is specified.

Keyspace Key Data type1 Well-known
data type2

mdta com.apple.quicktime.video.display-mask-
rect.mono

RasterRectangleVa
lue3

84

mdta com.apple.quicktime.video.display-mask-
rect.stereo-left

ExtendedRasterRec
tangleValue4

85

mdta com.apple.quicktime.video.display-mask-
rect.stereo-right

ExtendedRasterRec
tangleValue4

85

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 14

June 9, 2025 0.9 (Beta)

Each such metadata sample is associated with the presentation time of one or more video
frames and describes the portion of the decoded video that should be presented. All pixels
outside the rectangle described by RasterRectangleValue can be treated as not available.
That can be interpreted as having transparent alpha, or in some other way appropriate for the
player. This document does not prescribe a treatment.
If the metadata-described area is empty, no corresponding image buffer pixels are produced,
and so there’s nothing visible.
If no mask-related metadata item is present for the corresponding video frame, the video frame
should be shown. The only way to hide it is to have an empty mask geometry described by one
of the mask-related metadata keys. Note: This approach helps prevent a production issue in
which no timed metadata track is multiplexed with the encoded video track, and nothing is
shown. To hide the frame’s pixels, use a suitable mask.

Note: There may be future alternatives to per-frame rectangular mask metadata,
offering new approaches for identifying areas to treat as transparent. This
specification does not prescribe nor limit such additions. In general, the
expectation is that those mechanisms will have their own signaling and
will be used independently of this metadata approach. Mixing of
mechanisms described in this document and future mechanisms will be
associated with guidance, but the expectation is that only one mechanism
should be used.

Conclusion
The rectangular area defined with RasterRectangleValue and the documented timed
metadata keys can be used to limit the portion of decoded video that should be presented to
the viewer. The current RasterRectangleValue structure may be used in future versions of
this specification, for other cases in which describing a rectangular area is useful. Though
initially intended to be carried as a metadata item within a ‘mebx’ timed metadata track, the
construct may be incorporated into other parts of the QuickTime File Format. The design should
be applicable to ISOBMFF-derived formats if that proves useful.

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 15

June 9, 2025 0.9 (Beta)

Document Revision History
Date Revision Notes
2025-06-09 0.9 First version

 Copyright © 2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 16

	Introduction
	Overview
	References
	Motivations and goals of rectangular masks
	Characterizing the mask area of an associated video frame
	Suitable for stereo video with or without window violations
	Separation of mask shape from encoded video sample
	Differing aspect ratios
	Integrating time
	Client and production usage

	Rectangular mask value and metadata carriage
	Raster rectangle value payload definition
	Syntax
	Semantics
	Policy for working with RasterRectangleValues mathematically
	Carriage as timed metadata

	Conclusion
	Document Revision History

