

ISO Base Media File Format and
Apple HEVC Stereo Video
Format additions

Version 1.0
June 9, 2025

Note: The information contained within this document is
preliminary and is subject to change.

  Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. | 2022-07-08

June 9, 2023 1.0

Introduction ..3
References ..3
Stereo Video ...4

Stereoscopic, Stereopsis and Stereo Media ..4
Stereoscopic Video Tracks ..4
Multiview Video Tracks and MV-HEVC Compression ...5

Video Extended Usage ..5
Video Extended Usage Box Hierarchy ..6
1. Video Extended Usage (‘vexu’) box ..7

Use of other signaling extensions ...22
Horizontal field-of-view box ..22

Auxiliary Video Track Handler Type ..23
Spatial Audio ...23

Spatial Audio Technologies ...24
Timed Metadata and Spatial Media ...24

Caption parallax timed metadata items ...24
Conclusion ..25
Document Revision History ..26

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 2

June 9, 2025 1.0

Introduction
This document describes Apple extensions of, or specialized use of, the ISO Base Media Format
(a.k.a. ISOBMFF) to support spatial media. These extensions also apply to the QuickTime File
Format. Spatial media is intended to produce a richer experience for the user; whether a richer
audio experience, a richer visual experience, or a combination of the two.
Like the QuickTime File Format (QTFF) upon which it is based, the ISOBMFF format is meant to
serve as a container of media using tracks and movie-level structures. The movie format of that
media continues to evolve from the earliest “postage stamp” (i.e., very low resolution) video with
one- and two-channel uncompressed or barely compressed audio to modern formats
performing remarkable levels of visual compression for 4K and even 8K video with very rich
multichannel, ambisonic and object-based audio encoding. This is coupled with facilities to
carry and present captions such as WebVTT text tracks or closed captions embedded with
video. Static and timed metadata can be carried to augment the presented media. Still other
kinds of media tracks have been supported and will likely get added.
To support media that delivers rich spatial experiences, the QTFF and ISOBMFF foundations are
being extended with new media formats, with extensions to supported media formats, and with
new constructs to inform relationships among the new and earlier supported media. Some of
these extensions are specific to their spatial nature, whereas others are fundamental and used
by the former. This is all intended to be done in a way—where possible—so an existing ISOBMFF
or QTFF player or processor can interact with the spatial media possibly in a reduced but
compatible form while allowing new playback or processing to take fuller advantage of the
newly afforded richness.
This document describes new and updated file format structures to support spatial media.
Some of these structures are accessible through Apple AVFoundation and CoreMedia
framework interfaces and those serve as the preferred alternative to direct structural access
when running on a platform with Apple frameworks available. Those reading or writing the
format directly—pursuant to relevant licensing—should however be able to accomplish their
goals with the structural descriptions in the following sections.
Another consideration for ISOBMFF is that it is used in a fragmented movie form for HTTP
based delivery technologies such as HTTP Live Streaming. The support in standalone MP4 files
and fragmented MP4 resources is much the same.

Note: The words "may", "should", and "shall" are used in the conventional specification
sense, that is, respectively, to denote permitted, recommended, or required behaviors.

References
[QTFF] QuickTime File Format (QTFF), 2016
[ISOBMFF] ISO/IEC 14496-12:2020 ISO Base Media File Format
[ISONALU] ISO/IEC 14496-15:2019 “Carriage of network abstraction layer (NAL) unit structured
video in the ISO base media file format”
[HEVC] ISO/IEC 23008-2:2020 “High efficiency video coding”
[METADATA] “Video Contour Map Payload Metadata within the QuickTime Movie File Format—
Format Additions”

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 3

June 9, 2025 1.0

Stereo Video
Stereoscopic, Stereopsis and Stereo Media
Just as stereo audio indicates different audio for the left and the right ear, visual media can be
stereoscopic in which a view is available to be presented to the left eye and another view is
available to be presented simultaneously to the right eye. The presentation of both the left and
right views allows for an effect known as stereopsis which can be defined as:

the perception of depth produced by the reception in the brain of visual stimuli from both
eyes in combination; binocular vision.

The production and display of this is sometimes referred to in cinema as 3D, and the
implementation and storage of the views can vary. This cinema use of 3D should be
distinguished from 3D rendering involving a framework like Apple's Metal framework, where
geometry, materials, lighting and cameras are modeled and rendered by a GPU or CPU. In the
latter case, such three-dimensional rendering might produce a view as seen from the left eye
and a simultaneous view seen from the right eye and therefore be stereoscopic. Rendering of a
scene might however produce a single view that is not stereoscopic. This is sometimes called
monoscopic.
Stereoscopic media can also be captured photographically, where two cameras are offset
horizontally to produce a video where the left-eye view and the right-eye view are each
encoded. In this case, there’s not necessarily any modeling of the scene or any GPU rendering.
Playback presents the left captured view to the viewer’s left eye and the right captured view to
the viewer’s right eye. These left and right captured views might also have been processed.
Although storage strategies can vary, this document describes how to store stereoscopic
content using standardized ISO/ITU formats and some extensions to QTFF/ISOBMFF.

Stereoscopic Video Tracks
QTFF/ISOBMFF standalone and fragmented movies can include a single video track associated
with both the left and the right eye. This video track’s access units carry both a base and
secondary layer that correspond to a primary stereo eye view (left or right) and the
complementary stereo eye (i.e., right if the primary is the left, left if the primary is the right).
The expectation is that both stereo-eye views (i.e., the left-eye view and right-eye view) will be
shown to both the left and right eyes simultaneously. Both stereo views are available and
synchronized according to the movie timeline. When played, stereopsis is achieved.

Note: The ability to produce a movie with just one stereo eye video track (whether left or
right) can be useful in production workflows. Two tracks in the same movie or in two movies
might be useful. These might be combined into a new movie either by encoding with both
views in one video track or less commonly by carrying two video tracks. Though potentially
applicable to QTFF/ISOBMFF, it is not a described use case here.

This document introduces a VisualSampleEntry extension that can signal among other things
whether the associated video track is stereoscopic and which stereo eyes are carried in that
video track. This new signaling is referred to as video extended usage and is described in a later

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 4

June 9, 2025 1.0

section of this document. For now, the point is that this allows a movie reader to detect stereo-
related video tracks and to identify the stereo eyes contributed by that track so it can configure
presentation or other processing. Whereas the video track itself uses a video-compression
format and signals it has a left and right stereo view, the video extended usage is meant to be
more easily parsed and to be applicable to non-multiview video (i.e., not MV-HEVC).

Multiview Video Tracks and MV-HEVC Compression
A QTFF movie (i.e., .mov) or ISOBMFF (e.g., .mp4) movie video track carries video as either
uncompressed or compressed video media samples. In the case of compressed video, High
Efficiency Video Coding [HEVC] defines extensions to encode more than one view in the
compressed bitstream for each coded video frame (or access unit). Defined in Annex G of the
HEVC spec [HEVC], Multiview High Efficiency Video Coding defines how layers corresponding
to views can be encoded and associated. This is sometimes written as MV-HEVC, for Multiview
HEVC.
The QuickTime ImageDescription or ISOBMFF VisualSampleEntry (each referred to as visual
sample-entry) shall include a video extended usage visual sample-entry extension box
(described later in this document) indicating which stereo eye views—left, right or both—are
carried in the MV-HEVC video track. For MV-HEVC, both left and right-eye views should be
available. A hero eye indicating the default stereo eye may optionally be signaled. This construct
allows a client to determine the stereoscopic nature of the video track without needing to parse
for MV-HEVC bitstream details in the decoder configuration.
The video bitstream requirements of MV-HEVC coding, visual sample-entry and video media
samples are described in the document Apple HEVC Stereo Video Interoperability Profile.

Video Extended Usage
This specification introduces an optional visual sample-entry extension that can signal
additional aspects regarding the use of the video track’s decoded frames. The new extension is
called the video extended usage and uses the box type ‘vexu’ (optionally pronounced as “vex
you”). Details necessary for video frame decoding are still carried in the visual sample-entry
header (e.g., the compression type or the dimensions), as well as in other visual sample-entry
extensions (e.g., ‘colr’ and compression type specific decoder configurations). The ‘vexu’
extension describes aspects beyond fundamental decode. For instance, it may specify that the
video frames are stereoscopic or otherwise organized, requiring the video frames to be
processed or displayed in a special way before presenting to the viewer.
Traditionally, a video track within a movie file or movie fragments can be decoded and
immediately presented with little additional processing other than perhaps scaling, cropping
and placement. For video captured in the real world, such as from a camera or computer, this is
the norm. Even non-linear editing mostly works with video as stored in the movie files, perhaps
applying effects, but otherwise encoding video that is directly presentable.
Increasingly today, a video track may be used as input into a rendering process and may not be
suitable to show a viewer immediately. For example, a stereoscopic “3D” movie should present
the left-eye view to the viewer’s left-eye, and the right-eye view to the viewer’s right eye. To do
this, it is important to know first that the video track delivers stereoscopic views, and secondly
which of those views are available. For MV-HEVC video, the presence of [HEVC] and [ISONALU]
constructs such as the ‘hvcC’ and ‘lhvC’ extension data might seem sufficient, but

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 5

June 9, 2025 1.0

unfortunately requires all readers to parse significant HEVC detail. Generally, a guiding principle
is not to rely upon codec-level signaling to understand things that are needed at the container
level. Here, the video track’s ‘vexu’ visual sample-entry extension serves the role of easy-to-
interpret signaling that the video is stereoscopic. The ‘vexu’ visual sample-entry extension must
be consistent with what is signaled in the decoder configuration.
Beyond MV-HEVC, it may be desirable to use other video-compression formats (e.g., non-
Multiview HEVC) or uncompressed video to carry stereoscopic video without requiring their
fundamental decoded bitstream to signal the stereo use—something the format might not
support. A video extended usage extension can be added indicating that a video track carries
two stereo eyes or is for only one of the two stereo eyes. A ‘vexu’ extension can also be added
indicating that the decoded video is organized in some other way described in a future version
of this specification. This can be combined with stereoscopic detail that there is both a left and
a right stereo eye view. Here, playback and processing need to understand the video track uses
this alternative organization so it can route the left view and the right view portions of the
decoded frame to the respective viewer eye.

Video Extended Usage Box Hierarchy
The video extended usage extension box specifies the usage of the decode of the video
samples and details relevant to that usage. This is an optional extension and needed only when
special or useful interpretation of the video in playback or processing is required. If the state
signaled is not required for playback or processing, the extension may still be present but there
is no expectation the reader understands it.
This extension box is a box hierarchy and contains further boxes signaling particular aspects of
the video. These contained boxes may be leaf boxes—typically a FullBox—or box hierarchies
themselves. There is also a mechanism to indicate that contained boxes must be understood by
a reader and if not, that that part of the box hierarchy has failed to be processed. That error can
propagate upwards, failing within a local subtree or even in the entire video extended usage box
extension. This can in turn indicate the video should not be presented or processed as the
reader’s implementation lacks sufficient support.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 6

June 9, 2025 1.0

Table 1. Current box types defined in the ‘vexu’ box hierarchy

Note: must1: A must box may occur as a child box in any box hierarchy, to indicate reader
responsibility for understanding any child boxes of the must box's parent box. These locations
are not enumerated in the above table. Exemplar must boxes are included in the table, but these
positions should not be considered exhaustive.

1. Video Extended Usage (‘vexu’) box
This section describes how the video extended usage extension box is organized and the
constituent boxes.

1.1. Definition
Box Type: ‘vexu’
Container: Visual Sample Entry (different coding types)
Mandatory: No
Quantity: Zero or one
The video extended usage extension is a QuickTime File Format atom [QTFF] which is the same
as a Box in ISO/IEC 14496-12 [ISOBMFF]. As we will use the bitstream syntax from ISO/IEC

FourCC FourCC FourCC FourCC Box syntax element
vexu VideoExtendedUsageBox

must1 RequiredBoxTypesBox
eyes Video Stereo

must1 RequiredBoxTypesBox
stri StereoViewInformationBox
hero HeroStereoEyeDescriptionBox
cams StereoCameraSystemBox

blin StereoCameraSystemBaselineBox
cmfy StereoComfortBox

dadj StereoComfortDisparityAdjustmentBox
proj ProjectionBox

must1 RequiredBoxTypesBox
prji ProjectionInformationBox
. . . One of different per projection type boxes if needed

hfov HorizontalFieldOfViewBox

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 7

June 9, 2025 1.0

14496-12, we will use “box” interchangeably with “atom”. References to ImageDescription for
QTFF are also interchangeable with references to the ISO 14496-12 VisualSampleEntry.
The video extended usage box is held in a VideoExtendedUsageBox and has the ISO Box
box type of ‘vexu’, for video extended usage.
As a box, it can contain zero or more child boxes that together signal the nature of the
associated track samples’ extended usage. Having no child boxes is valid but likely not useful.
Having only child free-space boxes (i.e., a FreeSpaceBox) is appropriate if the intention is to
reserve space in the VisualSampleEntry.
To allow new or otherwise unknown VideoExtendedUsageBox child boxes to be introduced
while allowing older readers to know they do not understand enough to process or present the
video track, a mechanism is introduced to indicate mandatory and by implication optional child
boxes. Additionally, child boxes can indicate whether their own structure can be optional so
readers can recognize versions they do not support.
New Boxes should not be introduced into the VideoExtendedUsageBox unless documented in
this specification or a successor version of this specification.

1.2. Syntax
aligned(8) class VideoExtendedUsageBox extends Box(‘vexu’) {
 RequiredBoxTypesBox(); // optional if no required boxes specified
 StereoViewBox(); // optional
 ProjectionBox(); // optional
 Box() any_box; // other optional boxes with FreeSpaceBox()
reserved for its expected use
}

1.3.Semantics
The VideoExtendedUsageBox contains zero or more child boxes that signal
something about the use of the video. Child boxes will be defined in this specification
now or in the future. Child boxes might be defined in external specifications but the
box_type used there should be registered so as not to collide with boxes introduced in
this or related specifications. The order of child boxes in the
VideoExtendedUsageBox and in all contained boxes recursively is not prescribed. A
reader should be prepared to find boxes in any order.

Note: As FreeSpaceBox (‘free’) has a very common meaning in ISOBMFF and
QTFF, one or more free-space boxes may occur among the child boxes
and should be interpreted as having no other meaning than taking up
space. There is no guarantee that the payload of a FreeSpaceBox contains
exclusively zero (0) bytes, but that is encouraged.

Note: An empty VideoExtendedUsageBox (i.e., containing no child boxes) is
allowed but should generally not be included in the VisualSampleEntry. It
may however be useful to reserve space by including a
VideoExtendedUsageBox in concert with a contained FreeSpaceBox
(‘free’).

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 8

June 9, 2025 1.0

New child boxes may be introduced in the future that are not described in this spec.
There is a mechanism in the structure of VideoExtendedUsageBox to signal the set of
child boxes that an implementation must understand in order to usefully process the
video track. This allows future boxes to be introduced and older implementations to
know they should not present the video with newer signaled features.
Besides standard boxes, the VideoExtendedUsageBox may contain zero or more
boxes that describe specific kinds of signaling. In the following section, each kind of box
is described.
Note that a VideoExtendedUsageBox should carry only one child box for a specific
feature. So, for example, there should not be more than one feature box for stereo view
signaling.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 9

June 9, 2025 1.0

 A VideoExtendedUsageBox with contained boxes might look like the following:

This ‘vexu’ box here contains an ’eyes’ box and another box. This second box, the
'abcd' box, is optional, but if its type is included in a ‘must’ box, that indicates that it
must be understood by the reader. ‘free’ boxes allow space to be reserved. The other
box (i.e., 'abcd') represents an unknown but not required box.
The order of child boxes within a box may vary. Readers should not expect a fixed order
of child boxes at any level. A writer should not include a child box of a particular type
more than once if it is documented to occur only once.
1.2.Required box types (‘must’) box
1.2.1.Definition
Box Type: ‘must’
Container: A video box within the video extended usage box (‘vexu’) or within contained
Boxes
Mandatory: No
Quantity: Zero or one
If a parent box at any level within the VideoExtendedUsageBox has a 'must' box,
that 'must' box contains a list of box types corresponding to boxes that are peers to the
'must' box and that reader must successfully interpret in order for the parent box to be
successfully interpreted. In other words, if the reader does not recognize a required box
type, or if it fails to parse that box or any required child box of that box, the reader must
consider that to be a failure to parse the parent box. If the VideoExtendedUsageBox
box is considered failed, the track is to be ignored by the reader.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 10

vexu

eyes

has left, has right

stri

[eyes]

must

left

hero

000…0

free

????

abcd

June 9, 2025 1.0

Each box within the VideoExtendedUsageBox might serve to signal a feature
according to this specification. The set of boxes is interpreted by the reader to
understand what the video represents (e.g., it uses stereo views). Some of the signaling
is necessary for further processing. Other boxes may be informative but not strictly
required for interpretation. It’s important to understand all required boxes.
RequiredBoxTypesBox enables the adding of new boxes in the future that may be
required for interpretation and further processing.
Each box within the VideoExtendedUsageBox may contain any hierarchy of boxes
suitable to signal some aspect about the video. Some of these may be boxes with a
hierarchy of other boxes and some may be full boxes. The RequiredBoxTypesBox
enumerates the box types of its sibling boxes corresponding to required boxes. If not
enumerated within the RequiredBoxTypesBox, the child box’s interpretation is
optional.
The RequiredBoxTypesBox contains an array of FourCCs corresponding to box
types. If an entry is 0, the entry is reserved and is not interpreted as a required box type.
Free-space boxes of box type ‘free’ should not be included in a
RequiredBoxTypesBox. If a RequiredBoxTypesBox includes a box type that
doesn’t correspond to a child box, the reader can ignore the absence but might want to
log this for diagnostic purposes. The use of box types of missing boxes within a
RequiredBoxTypesBox is however discouraged.
The FreeSpaceBox box type of ‘free’ should not be referenced from a
RequiredBoxTypesBox.
The RequiredBoxTypesBox can also occur within other boxes within the
VideoExtendedUsageBox box hierarchy that are themselves box hierarchies. These
uses of RequiredBoxTypesBox serve to indicate local requirements on boxes that
must be recognized and understood for local parsing to be valid. A local box can fail and
that influences the validity of the parent box if the parent box itself is referenced from
another RequiredBoxTypesBox that is a sibling of the parent box.
1.2.2.Syntax
aligned(8) class RequiredBoxTypesBox extends FullBox(‘must’, 0, 0) {
 unsigned int(32) required_box_types[];
}

1.2.3.Semantics
required_box_types is an array of zero or more box types corresponding to
sibling boxes that must be understood by readers to properly process the video
associated with the VideoExtendedUsageBox. For each non-zero entry in
required_box_types[], the reader should confirm the box type is recognized. A
value of zero (0) in a required_box_types[] entry can be ignored, allowing for
space for entries to be reserved.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 11

June 9, 2025 1.0

1.2.4.Reader Behavior and RequiredBoxTypesBox
A reader of a movie file video track with an associated VideoExtendedUsageBox
should be able to detect whether it understands enough about the
VideoExtendedUsageBox contents to process the video beyond fundamental decoding.
This further processing, interpretation and/or rendering is what extended refers to
within within the identifier name “VideoExtendedUsageBox”.
This specification is intended to be extended in future versions. A particular video track
may carry several kinds of signaling that differ from other video tracks within the movie
file or in other movie files. The kind of signaling within a box can itself evolve over time.
In all these cases, it is important to know if the set of child boxes of a box must be
understood. While the most obvious case is child boxes of
VideoExtendedUsageBox, the approach can apply to any Box serving as the root of
a box hierarchy within the larger hierarchy.
The following describes reader behavior that is aware of RequiredBoxTypesBox:

1. Read (or start processing) the box hierarchy (e.g., VideoExtendedUsageBox).
2. Retrieve the contained RequiredBoxTypesBox child box if any.

1. If present, confirm all non-zero entries of required_box_types[] are
recognized box types and if not treat the parent box of the
RequiredBoxTypesBox as not processable.

2. Ignore all zeroed entries of required_box_types[].
3. Enumerate each non-zero box type in the required_box_types[] of the

child RequiredBoxTypesBox of the VideoExtendedUsageBox using an
index from 0 to the length of required_box_types[] minus 1 and confirm
the referenced box is understood.

1. For each successive index, retrieve the child box with
required_box_types[index] and confirm understanding of its
structure.

1. For a child FullBox, the reader should consider the version and
flags to confirm understanding as well as anything else that may
be relevant to its interpretation.

2. For child boxes that are box hierarchies themselves and allow
RequiredBoxTypesBox, the reader should descend into the
box, retrieve the optional contained RequiredBoxTypesBox
and perform this algorithm recursively.

3. If the parsing of the FullBox or the child box hierarchy fails, the
reader should treat the current level as invalid and propagate that
failure upwards. Any semantics discovered at the current level
should not be propagated upwards as partial semantics is

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 12

June 9, 2025 1.0

misleading (e.g., stereo view and something else both being
required should not signal stereo views if the other parsing fails).

The VideoExtendedUsageBox parsing follows this same algorithm. In this case,
however, failing to parse required child boxes of VideoExtendedUsageBox means
the track has failed to parse. This can best be interpreted as though the entire video
track is unavailable.
1.3. Video stereo-view signaling
The StereoViewBox signals if the video track represents stereo 3D content. This can
take the form of a track that delivers both a left stereo eye and a right stereo-eye view
or a track that carries only the left stereo eye or only the right stereo eye.
If both left and right stereo eyes are carried, the views might be combined in one image
and organized in some way or they might be contained in some kind of multiview
coding.
If the left stereo eye is in one video track and the right stereo eye is in a second video
track, each carries its own VideoExtendedUsageBox with a StereoViewBox. The
indication of which eye is carried will be appropriate for each corresponding video track.
For completeness, it is also possible to signal monoscopic video which is to say no
stereo view carriage. If this is the case, however, the StereoViewBox can be
eliminated from the VideoExtendedUsageBox. If the VideoExtendedUsageBox
would be left with no child boxes, the VideoExtendedUsageBox can be eliminated
from the VisualSampleEntry as well.
If the recorded stereo video has a designated “hero” eye, the StereoViewBox carries
a HeroStereoEyeBox. There are rules that require signaling when the stereo eye
video is separated into two video tracks, with each track carrying only one of the stereo
eyes.
1.3.1.Definition
Box Type: ‘eyes’
Container: Video extended usage box (‘vexu’)
Mandatory: No
Quantity: Zero or one
1.3.2.Syntax
aligned(8) class StereoViewBox extends Box(‘eyes’) {
 RequiredBoxTypesBox(); // as needed
 StereoViewInformationBox();
 HeroStereoEyeDescriptionBox(); // optional
 StereoCameraSystemBox(); // optional
 StereoCameraSystemBaselineBox(); // optional
 Box(); // other optional boxes
}

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 13

June 9, 2025 1.0

1.3.3.Semantics
StereoViewInformationBox is a required box indicating which stereo eyes are
present.
RequiredBoxTypesBox indicates the box types for other boxes that must be
understood to interpret the current version of the StereoViewsBox. The
StereoViewInformationBox box type of ‘stri’ is required within
RequiredBoxTypesBox if a RequiredBoxTypesBox is used.

Other boxes indicate additional detail about the stereo view representation and are
described in later sections of this document. The set of boxes may evolve.
1.4. Stereo view information (‘stri’)
1.4.1. Definition
Box Type: ‘stri’
Container: Video stereo-view box (‘eyes’)
Mandatory: Yes
Quantity: One
The StereoViewInformationBox can carry the stereography related information
indicating the presence of particular stereo eyes (i.e., left stereo eye, right stereo eye) as well as
some other flags.
1.4.2. Syntax
aligned(8) class StereoViewInformationBox extends FullBox(‘stri’, 0, 0) {
 unsigned int(4) reserved; // reserved, set to 0
 unsigned int(1) eye_views_reversed;
 unsigned int(1) has_additional_views;
 unsigned int(1) has_right_eye_view; // video contains a right-eye view
 unsigned int(1) has_left_eye_view; // video contains a left-eye view
}

1.4.3. Semantics
has_left_eye_view: Indicates the stereo left eye is present in video frames
has_right_eye_view: Indicates the stereo right eye is present in video frames
has_additional_views: Indicates that one or more additional views may be
present beyond stereo left and stereo right eyes (e.g,. a “centerline” view)
eye_views_reversed: Indicates that the order of the stereo left eye and stereo
right eye are reversed from the default order of left being first and right being second
reserved: 4 bits reserved for future versions of this specification; for this version of
this specification, writers should set it to 0 and readers should treat any non-zero
values as if this box is invalid.

Because there is a flag field for the left eye and a field for the right eye, both fields
should be set to indicate that both eyes are represented in video frames. Moreover, both

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 14

June 9, 2025 1.0

has_left_eye_view and has_right_eye_view can be set to 0 to indicate that
the frame is monoscopic.

Note: If the video is monoscopic, the StereoViewBox can also be absent
from the VideoExtendedUsageBox. If the only signaling is of
monoscopic video, the VideoExtendedUsageBox can be absent from
the VisualSampleEntry, too.

If an alternative organization is signaled in the future, the default order of stereo eyes in
video will be left eye first, then right eye. Setting the eye_views_reversed field
reversed the order, so the right view appears to the left of the frame, and the left view
appears to the right of the frame. For multiview coding, there is no implied ordering and
the eye_views_reversed field should be set to 0.

Note: It may be useful to signal in a multiview coding approach the presence of
the left stereo eye, the right stereo eye and a third view which is the
“centerline” or “down the nose” view which is between these and is
neither the left nor the right. It may not be possible or appropriate to use
the left or the right eye for this central view. There may be coding
efficiencies from being able to include such a view in multiview coding.

The has_left_eye_view and has_right_eye_view fields specify the presence
of the left and right stereo eye views but the fields do not signal how those are stored.
That is accomplished with other child boxes of StereoViewBox.
Note that the has_additional_views field indicates that views beyond those for
the left eye and the right eye are present. One example of this might be a “centerline”
view. Note that signaling the presence of the “centerline” is not necessary if both the
left and right eye flags are zeroed indicating a monoscopic view.
1.5.Hero Stereo Eye Description
1.5.1. Definition
Box Type: ‘hero’
Container: Video stereo-view box (‘eyes’)
Mandatory: No
Quantity: Zero or one
The HeroStereoEyeDescriptionBox indicates which stereo eye, if any, has been
denoted as the “hero” eye. If so signaled, this indicates that the other stereo eye view is
derived from the specified stereo eye and may be useful when choosing which eye to
use in a monoscopic viewing environment. If neither eye is the hero eye, the
HeroStereoEyeDescriptionBox does not need to be included in the
StereoViewBox. If the hero eye is not known, a HeroStereoEyeDescriptionBox
might not appear in the StereoViewBox.
It is possible to include a HeroStereoEyeDescriptionBox but set the flags to
indicate that neither the left nor the right stereo eye are set. Though unconventional,
this allows an implementation to reserve space for the box, to potentially set later in

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 15

June 9, 2025 1.0

processing. Readers should be prepared to recognize such a
HeroStereoEyeDescriptionBox that signals no hero eye.
1.5.2.Syntax
aligned(8) class HeroStereoEyeDescriptionBox extends FullBox(‘hero’, 0, 0)
{
 unsigned int(8) hero_eye_indicator; // 0 = none, 1 = left, 2 = right, >=
3 reserved
}

1.5.3. Semantics
HeroStereoEyeDescriptionBox is used to indicate which of the left or right
stereo eye is the “hero” eye, if any.
hero_eye_indicator: is used in the HeroStereoEyeDescriptionBox, to
signal which hero eye, if any is specified. Defined values are:

0: The hero eye is not specified
1: Indicates the left eye is the hero eye
2: Indicates the right eye is the hero eye
>= 3: Reserved, and should not be used for implementation of this version of this
specification. If a reserved value is read, a reader should treat the signaling as
though no hero eye is specified. If the hero eye is not specified, it is recommended
that HeroStereoEyeDescriptionBox not be included in the StereoViewBox.
The value of 0 is allowed as it can be used to reserve space for the
HeroStereoEyeDescriptionBox that might be adjusted later.

The HeroStereoEyeDescriptionBox signals the left or the right stereo eye
independently of whether or not the stereo-view box’s
StereoViewInformationBox indicates that the order of the stereo eyes is reversed
in order. The hero left eye is always the left stereo eye and the hero right eye is always
the right stereo eye.
1. Stereo Camera-System Box
1.1. Definition
Box Type: ‘cams’
Container: Stereo-view box (‘eyes’)
Mandatory: No
Quantity: Zero or one
Stereo views are typically produced through capture by a camera system of some kind.
Characteristics of that camera system may be useful for rendering or other processing.
Moreover, the kinds of information associated with a camera system may vary now or in the
future. As such, it seems prudent to allow one or more kinds of information to be carried for
consideration by the processing client. It is also the case that this information is optional, as
some stereo recording might not use a physical camera system. It may, however, be the case

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 16

June 9, 2025 1.0

that the camera system is virtual, so being able to include information that a physical camera
system produces also seems useful to allow.
To signal information about the stereo nature of the camera system, the
StereoCameraSystemBox is introduced. This is an optional Box instead of a FullBox
so that a hierarchy of boxes and full boxes related to the camera system can be carried.
1.2. Syntax
aligned(8) class StereoCameraSystemBox extends Box(‘cams’) {
 RequiredBoxTypesBox(); // optional
 StereoCameraSystemBaselineBox(); // optional
 Box[]; // other boxes that signal information about the camera system
}

1.3. Semantics
StereoBaselineBox is used to describe the baseline dimension between centers of
the stereo lenses of the camera system. It is optional. There is no default interpretation
when this box is absent.

2. Stereo Camera-System Baseline Box
2.1. Definition
Box Type: ‘blin’
Container: Stereo camera-system box (‘cams’)
Mandatory: No
Quantity: Zero or one
Stereo camera systems may provide a number of characteristics that may prove useful to
downstream rendering and processing of stereo frames captured by a camera system. One
such characteristic is the distance between the optical centers of the left and right stereo eye
camera lenses.
To signal information about the camera-system baseline, the
StereoCameraSystemBaselineBox is used. This is an optional FullBox that holds a
field with the distance in micrometers between the lenses. As distances in a camera system are
typically expressed in millimeters, this use of micrometers can also be seen as being expressed
in thousandths of a millimeter. The value is a fixed-point number expressed as an integer (i.e.,
63123 micrometers is 63.123 millimeters).

Note: Although StereoCameraSystemBaselineBox is not mandatory in the
overall box structure of VideoExtendedUsageBox, its presence is
required for the containing movie file to be considered "spatial media" by
visionOS 2.

2.2. Syntax
aligned(8) class StereoCameraSystemBaselineBox extends FullBox(‘blin’) {

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 17

June 9, 2025 1.0

 unsigned int(32) baseline_value;
}

2.3. Semantics
baseline_value holds the baseline dimension between centers of the stereo
lenses of the camera system. It is an unsigned 32-bit integer that is interpreted in
micrometers or thousandths of a millimeter (e.g., 63123 micrometers is 63.123
millimeters).

3. Stereo-Comfort Box
3.1. Definition
Box Type: ‘cmfy’
Container: Stereo-view box (‘eyes’)
Mandatory: No
Quantity: Zero or one
Stereo views are presented to the left and the right eye in a display system. How that is
performed can influence comfort. To allow different kinds of information related to stereo
comfort to be carried with the stereo video frames, it is useful to allow one or more pieces of
information to be carried.
To signal information influencing viewer comfort, the StereoComfortBox is introduced.
This is a Box instead of a FullBox, so that a hierarchy of boxes and full boxes related to
stereo comfort can be carried. This box is optional unless there are contained boxes. Only
StereoComfortDisparityAdjustmentBox is currently defined.
3.2. Syntax
aligned(8) class StereoComfortBox extends Box(‘cmfy’) {
 RequiredBoxTypesBox(); // optional
 StereoComfortDisparityAdjustmentBox(); // optional
 Box[]; // other boxes that signal information about stereo comfort
}

3.3. Semantics
StereoComfortDisparityAdjustmentBox is used to describe any adjustment
in the disparity between the stereo views of the current frame. The absence of this
box or a zero value in the disparity_adjustment field of the box indicates no
change in stereo disparity.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 18

June 9, 2025 1.0

4. Stereo-Comfort Disparity Adjustment Box
4.1. Definition
Box Type: ‘dadj’
Container: Stereo-comfort box (‘cmfy’)
Mandatory: No
Quantity: Zero or one
Stereo view comfort can be improved by allowing an adjustment in disparity to be specified. The
source of this disparity is not specified, but the value’s carriage is. As this adjustment is
optional, this information may not be present.
To signal information about changes to the stereo comfort disparity, the
StereoComfortDisparityAdjustmentBox is introduced. This is a FullBox holding a
field that indicates the amount of disparity to apply. If the value is 0, there is no disparity
adjustment. The value is a signed 32-bit integer that is interpreted as a uniform number over the
range [-1.0…0.0…+1.0]. The valid range of the integer is from -10000 to +10000, which maps
from -1.0 to +1.0. The interval of 0.0 to 1.0 and 0.0 to -1.0 are each mapped over the width of a
view’s image. Half of this value is applied to each stereo eye view.
The value is interpreted this way:

- Half the disparity is added to pixels in the left stereo eye view.
- Half the disparity is subtracted from pixels in the right stereo eye view.

As the disparity value is signed, adding a negative value to the left stereo eye is equivalent to
subtracting the absolute value of the disparity value. The right stereo eye’s subtraction of a
negative disparity value is likewise equivalent to adding the absolute value of the disparity
value.
Another interpretation of the sign of the disparity value is that positive denotes increased
disparity with respect to the parallel view direction (e.g., horizontal) and negative denotes
increased negative disparity with respect to the parallel view direction. Negative disparity is
toward the viewer.
If the disparity adjustment value is 0, the StereoComfortBox need not contain a
StereoComfortDisparityAdjustmentBox. If the StereoComfortBox would be left
with no child boxes, the StereoComfortBox can itself be missing. There are rules, however,
requiring the StereoComfortBox to exist.

Note: Although StereoComfortDisparityAdjustmentBox is not
mandatory in the overall box structure of VideoExtendedUsageBox,
its presence is required for the containing movie file to be considered
"spatial media" by visionOS 2.

4.2. Syntax
aligned(8) class StereoComfortDisparityAdjustmentBox extends
FullBox(‘dadj’) {
 int(32) disparity_adjustment;
}

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 19

June 9, 2025 1.0

4.3. Semantics
disparity_adjustment holds a value describing an optional adjustment in stereo
disparity. A value of 0 indicates there is no disparity adjustment and can also be
represented by not including a StereoComfortDisparityAdjustmentBox in
StereoComfortBox. The value is a signed 32-bit integer measured in the range of
-10000 to 10000, mapping to the uniform range [-1.0…1.0]. The interval of 0.0 to 1.0
or 0 to 10000 maps onto the stereo eye view image width. The negative interval 0.0
to -1.0 or 0 to -10000 similarly maps onto the stereo eye view image width.

Note: This is not measured as a percentage but instead as a uniform value. To
express 1.5%, the value 0.015 as a uniform value, or as the signed integer
150 (expressed over 10000), can be used.

Note: If the video is frame packed, for example, as side-by-side, the image width
is for one stereo eye rather than the total image width of the side-by-side
views. Other kinds of packings or arrangements also use the image width of
the view, however stored or represented.

2. Video projection signaling
Projections
A projection is a mathematical model mapping 3D world points onto 2D points such as
an image or sensor. This mapping in a camera system can be achieved through optical
elements such as lenses, through software or through a combination of the two.
2.1. Definition
Box Type: ‘proj’
Container: Video stereo-view box (‘eyes’)
Mandatory: No
Quantity: Zero or one
If the video frame has some form of projection or other mathematical transform, the projection
box may be used to indicate the algorithm and the approach taken. Downstream rendering likely
needs to perform a mapping to present the frame in a way the viewer understands.
ProjectionBox signals that a form of projection is required to present the video
track. Its contents signal one kind of projection.
2.2. Syntax
aligned(8) class ProjectionBox extends Box(‘proj’) {
 RequiredBoxTypesBox();
 ProjectionInformationBox();
 RectilinearProjectionBox(); // optional: one of the kinds of the
possible projections (default if absent)
 Box[]; // other kinds of boxes
}
 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 20

June 9, 2025 1.0

2.3. Semantics
ProjectionInformationBox indicates the kind of projection described by the
ProjectionBox. Each possible projection kind may be associated with a sibling
box with additional parameters for that projection kind.
RequiredBoxTypesBox indicates the box types for other boxes that must be
understood to interpret the current version of the ProjectionBox.
RectilinearProjectionBox indicates that the projection is a rectilinear
projection. More detail is found later in this specification.
Other kinds of projections may be introduced in future versions of this specification.
Current versions of projections may also be extended in the future.

Note: The projection kinds may not require any additional parameterization, so
child box types for a particular projection kind may not exist.
Nevertheless, the box_type for such projection kinds is reserved.

3. Projection information (‘prji’)
3.1. Definition
Box Type: ‘prji’
Container: Projection box (‘proj’)
Mandatory: No
Quantity: One
The kinds of projections described by a ProjectionBox can vary according to this
specification, and in future versions of this specification. The
ProjectionInformationBox indicates the kind of projection carried.
3.2. Syntax
aligned(8) class ProjectionInformationBox extends FullBox(‘prji’, 0, 0) {
 unsigned int(32) projection_kind; // a FourCC for the kind of
projection
};
3.3. Semantics
projection_kind is a FourCC corresponding to the kind of projection. These
currently include ‘rect’, ‘equi’,‘hequ’ and 'prim' with the reserved 'fish' kind.

The ProjectionInformationBox can specify one kind of video projection for a
video track. With this version of the specification, it should be one of the following
projection_kind FourCCs with the corresponding projection kind of box:

• ''rect' : RectilinearProjectionBox indicates that there is no projection,
and serves as the default in the absence of the ProjectionBox within the
VideoExtendedUsageBox. Because it is the default, this is likely not seen
in movie files.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 21

June 9, 2025 1.0

The ProjectionBox containing the ProjectionInformationBox may optionally have a
child box, using a box type that corresponds to the projection_kind. This child box is a
sibling of ProjectionInformationBox. It signals any parameters specific to that kind of
projection, and reserves the corresponding box types. Although no occurrences
of such boxes are defined in this specification, such usage is reserved for the future.

4. Rectilinear projection
4.1. Definition
Box Type: ‘rect’
Container: Projection box (‘proj’)
Mandatory: No
Quantity: Zero or one
The rectilinear projection is the default for video. There is no further processing
necessary to present video marked with just this projection. As the default, this can be
signaled by not including a ProjectionBox, or even by not including a
VideoExtendedUsageBox if there is no other signaling.
If this projection is used, the sibling ProjectionInformationBox
projection_kind should be set to ‘rect’.
It is possible to use this box to make it obvious what the intention is.
4.2. Syntax
aligned(8) class RectilinearProjectionBox extends FullBox(‘rect’, 0, 0) {
 // fields reserved for future use
};
4.3. Semantics
RectilinearProjectionBox signals a rectilinear projection. No fields are currently
defined within the box, but a child box of type 'rect' is reserved for future addition to this
specification.

Use of other signaling extensions
Horizontal field-of-view box
The VisualSampleEntry defined an extension box to signal the horizontal field of view.
2. Definition
Box Type: ‘hfov’
Container: Visual sample entry
Mandatory: No
Quantity: Zero or one
The horizontal field of view of the decoded video frame image may be important to know. This
can be signaled with the optional HorizontalFieldOfViewBox extension to
VisualSampleEntry. The horizontal field of view is an unsigned integer in 1000ths of a
degree (e.g., 123.456 is represented as 123456).
 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 22

June 9, 2025 1.0

The HorizontalFieldOfViewBox is optional, but if present, there can be at most one
HorizontalFieldOfViewBox in a VisualSampleEntry.

Note: Although HorizontalFieldOfViewBox is not mandatory in the
overall VisualSampleEntry structure parallel to
VideoExtendedUsageBox, its presence is required for the containing
movie file to be considered "spatial media" by visionOS 2. It may be
present for other use cases beyond stereo video.

2.1.1.1.1. Syntax
aligned(8) class HorizontalFieldOfViewBox extends Box(‘hfov’) {
 unsigned int(32) field_of_view;
};
2.1.1.1.2. Semantics
field_of_view: An unsigned 32-bit integer indicating the degrees, in 1000ths of a
degree. A 104º field of view would be recorded as 104000.

Auxiliary Video Track Handler Type
To date, video tracks have used the handler type ‘vide’. Other track types such as audio and
metadata use their own handler types (i.e., ’soun’ and ‘meta’, respectively). This has never been
a problem because the decoded video can be presented as-is, though perhaps with scaling or
cropping. With stereo video tracks, the decoded video may require additional processing such
as view extraction before being presented to the user.
Movies or fragmented movie files for HTTP Live Streaming may now use the auxiliary video or
‘auxv’ handler type to “hide” the video track from naive reader decode and presentation. For
example, this can be useful for a video track with an alternative layout of images, signaled using
a video extended usage atom.
If the decoded video, however, displays in a backwards compatible way when delivered—such
as MV-HEVC showing just a default view from the stereo pair—there is no need to use the ‘auxv’
handler type. Use ‘vide’ in this case. Also, HTTP Live Streaming mediates the media shown so
that the multivariant playlist can serve to filter display of particular video streams.
In a production workflow where users expect to see and confirm the decoded video even if
further processing might be expected when delivered to an end user, it is okay to use ‘vide’ so
tools that already present or process video tracks can find the track.

Spatial Audio
The experience is enhanced if audio can represent the spatial acoustic environment. Just as
listening to stereo audio is richer than listening to mono audio, even richer audio representations
are possible with appropriate audio coding. A number of advanced audio technologies exist and
they may be used in isolation or in combination.
QTFF/ISOBMFF audio tracks use audio codecs to encode and carry audio—uncompressed and
compressed—and the codecs can use different audio technologies. Some technologies are
 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 23

June 9, 2025 1.0

applicable to Spatial Audio, and when used in that way, the audio might be termed Spatial Audio.
The ISOBMFF format can carry a wide range of uncompressed and compressed format, some
supporting spatial playback. By introducing new audio codecs in audio tracks, the movie can
carry spatial audio.
ISOBMFF movies may contain any supported audio format. As additional formats are supported,
those may prove useful for delivering more richer experiences.

Spatial Audio Technologies
By way of a quick summary, there are three audio technologies typically used in the Spatial
Audio realm.
Channel-based audio can include more than one audio channel, each of which is mapped onto
the speaker layout. This is called multi-channel audio, and is typically used with 5.1 and 7.1
audio. The number and placement of these channels in the soundscape can be more varied and
the channel count can be more or less than the six of 5.1 or the eight of 7.1. Indeed, stereo has
two channels, so is in fact multichannel, but that term is almost never applied to stereo.
Another technology, termed ambisonics, is a modeling of three-dimensional audio in a 360-
degree space. It allows for the recording, mixing and playing back of such audio. Just as multi-
channel audio can vary in channel count, ambisonic audio can vary in order allowing more
refined audio with higher degreed ambisonics. Audio is fixed in location but surrounds the user.
A third technology, object-based audio, models each sound source as an object with associated
metadata describing three-dimensional placement and other relevant characteristics. Individual
objects might be fixed in 3D or might move in 3D over time.
This specification does not prescribe which audio encoding formats or which technologies
within those formats are used to realize a richer experience.

Timed Metadata and Spatial Media
Spatial media tracks such as video may benefit from having associated timed metadata.
Although this might be injected in AVC or HEVC SEI signaling, an alternative is to use a parallel
metadata track. This timed metadata track can use the ISOBMFF ‘mebx’ format’s ability to carry
a number of metadata items for a time range. Metadata item keys need not be related to other
item keys allowing a flexible way to signal a variety of structural or descriptive information.
We consider one kind of timed metadata payload related to describing the parallax of decoded
stereoscopic video frames.

Caption parallax timed metadata items
Traditionally, captions are placed in the horizontal and vertical axes over video. With the
introduction of stereoscopic video, however, there is a risk of depth collision if captions are
placed in Z so they might intersect with stereoscopic elements that have a parallax (i.e.,
horizontal disparity) that is less than the screen plane. This “depth conflict” can produce viewer
discomfort. To account for this, captions can have their parallax adjusted to have a more
negative parallax than the video elements so there is no collision.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 24

June 9, 2025 1.0

The document “Video Contour Map Payload Metadata within the QuickTime Movie File Format—
Format Additions” [METADATA] specifies the structure of a metadata payload structure that can
serve to describe parallax values associated with 2D areas of a stereoscopic video frame. This
metadata is specific to the time-aligned video frame.
This payload is carried as metadata items within samples within QuickTime File Format [QTFF]
timed metadata or ISOBMFF [ISOBMFF] multiplexed metadata. Note: Both of these use the
'mebx' format type of the 'meta' track handler type. The payloads can also occur in fragmented
movie files in both ISOBMFF and QTFF.

Conclusion
This document describes extensions to the QuickTime (.mov) and ISOBMFF movie formats.
These extensions are introduced by Apple to allow for delivery of stereoscopic video, spatial
audio and timed metadata signaling to influence parallax of any subtitles associated with the
video. This is applicable to both ISOBMFF standalone movie and fragmented movie files. It
attempts to build on existing structures where that was deemed appropriate and introduces new
constructs where there was a perceived deficit or a benefit in introducing a new construct. The
evolution of the QTFF/ISOBMFF format extensions described here may be taken through
standards processes in time.

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 25

June 9, 2025 1.0

Document Revision History
Date Revision Notes
2025-06-09 1.0 Version 1.0,

Added baseline, disparity adjustment, horizontal field of view.
Added view projection with rect projection type.

2023-06-21 0.9 First version

 Copyright © 2023-2025 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of
 Apple Inc., registered in the U.S. and other countries. 26

	Introduction
	References
	Stereo Video
	Stereoscopic, Stereopsis and Stereo Media
	Stereoscopic Video Tracks
	Multiview Video Tracks and MV-HEVC Compression

	Video Extended Usage
	Video Extended Usage Box Hierarchy
	Video Extended Usage (‘vexu’) box

	Use of other signaling extensions
	Horizontal field-of-view box

	Auxiliary Video Track Handler Type
	Spatial Audio
	Spatial Audio Technologies

	Timed Metadata and Spatial Media
	Caption parallax timed metadata items

	Conclusion
	Document Revision History

