

I n s i d e W e b O b j e c t s

Discovering WebObjects for HTML

May 2001



 Apple Computer, Inc.
© 2001 Apple Computer, Inc.
All rights reserved.
No part of this publication may be re-
produced, stored in a retrieval sys-
tem, or transmitted, in any form or by
any means, mechanical, electronic,
photocopying, recording, or other-
wise, without prior written permis-
sion of Apple Computer, Inc., with
the following exceptions: Any person
is hereby authorized to store docu-
mentation on a single computer for
personal use only and to print copies
of documentation for personal use
provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of Ap-
ple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial pur-
poses without the prior written con-
sent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application devel-
opers to develop applications only for
Apple-labeled or Apple-licensed
computers
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, Cocoa, Mac,
Macintosh, and WebObjects are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Enterprise Objects and Enterprise
Objects Framework are trademarks of
NeXT Software, Inc., registered in the
United States and other countries.
Java is a registered trademark of Sun
Microsystems, Inc. in the United
States and other countries.
Simultaneously published in the
United States and Canada

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRAN-
TY OR REPRESENTATION, EITHER EX-
PRESS OR IMPLIED, WITH RESPECT
TO THIS MANUAL, ITS QUALITY, AC-
CURACY, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PUR-
POSE. AS A RESULT, THIS MANUAL IS
SOLD “AS IS,” AND YOU, THE PUR-
CHASER, ARE ASSUMING THE EN-
TIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL, IN-
CIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possi-
bility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is au-
thorized to make any modification, exten-
sion, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liabil-
ity for incidental or consequential damag-
es, so the above limitation or exclusion
may not apply to you. This warranty gives
you specific legal rights, and you may
also have other rights which vary from
state to state.

3



 Apple Computer, Inc. May 2001

Contents

Figures, Listings, and Tables

9

Chapter 1

About This Book

13

Why Read This Book 13
Assumptions 14
Further Reading 16

Chapter 2

Introduction to WebObjects

17

WebObjects Features 18
Database Access and Independence 18
Scalability 18
Object Orientation 19
Dynamic Publishing 20
User Input 22
Client-Server Applications 23

Development Tools 23
Project Builder 24
WebObjects Builder 24
EOModeler 24

Chapter 3

Your First Project

27

Project Builder 27
Hello WebObjects 28

Launch Project Builder 28
Using the New Project Assistant 28
The Main Window 31
Modifying the Main Component 33

4



 Apple Computer, Inc. May 2001

C O N T E N T S

Building the Project 34
Running the Project 34

Chapter 4

Developing Dynamic Content

37

Components and Classes 38
The Main Component 39

Adding Java methods 39
Adding a WOString 40

HTML and WOD Files 43
Build and Run the Application 43
Response Generation 44
Maintaining State in the Component 46

Adding the Variable to Count Method Calls 47
Displaying the Count 48
Increasing the Variable’s Value 48
Refreshing the Page 49
The Counter in Action 50

Further Exploration 52

Chapter 5

Managing User Input

53

Request Processing 54
Processing the Request 58
Generating the Response 60
Backtracking Cache 61

User Interface 62
Tracing the Request-Response Loop 65
Conditional Display With WOConditional Elements 68
Derived Properties 72

Chapter 6

Component Communication

77

Custom Objects 77
Duplicating the UserEntry Project 78
Adding the Custom Class 78

C O N T E N T S

5



 Apple Computer, Inc. May 2001

Following a Keypath 83
Defining a New Component 84
Modifying the Main component 91
Running the Application 93

Chapter 7

Using the Session to Manage State

95

The Session 96
Displaying and Editing Lists of Objects 97

The NSArray and NSMutableArray Classes 97
NSArray 98
NSMutableArray 98

Adding the NSMutableArray to the Session 98
Adding the WORepetition to Main 101
Editing the Users 103
Displaying and Editing Lists of Objects 97
Deleting Users 105

Running the Application 105
Benefits of Encapsulation 106
The NSArray and NSMutableArray Classes 97

Chapter 8

Database Basics

109

Database Structure 109
Tables 109
Rows 110

Uniquing 110
Not Null 111

Relationship 111
To-One Relationships 112
To-Many Relationships 113

Chapter 9

Introduction to Enterprise Objects

115

System Architecture 115
WebObjects Interaction 118

6



 Apple Computer, Inc. May 2001

C O N T E N T S

Enterprise Objects 118
EOControl 119

The Object Graph 119
The Editing Context 120

EOAccess 120
The Adaptor Level 120
The Database Level 121

The Model 121

Chapter 10

Working With Editing Contexts

123

The Authors Application 123
Creating the Authors Database 124
Creating the Authors Model 125

Adding the Author Entity to the Model 128
The EOModeler Window 133
Creating the AUTHOR Table 135

Creating the Application 136
Customizing the Main component 137

Customizing Main.wo 138
Customizing Main.java 140

Running the Authors Application 145
Browsing the Database 147

Further Exploration 148

Chapter 11

Using Custom Objects

151

Generating a Custom Class 151
Generating a Java Class From a Model Entity 151
Adding a Java Class to the Project 152

Modifying the Authors Project 155
Adding Custom Logic 158
Using Custom Logic 159
Setting Default Values 163

C O N T E N T S

7



 Apple Computer, Inc. May 2001

Chapter 12

Working With Relationships

165

Completing the Authors Model 165
Define the Book Entity 166
Create the BOOK Table 169
Define the Model’s Relationships 170

What Are Delete Rules? 172
Delete Rules in the Authors Model 172

Using Relationships in Your Code 173
Add Java Classes for Author and Book to the Project 174

To-One Relationships in Java 177
To-Many Relationships in Java 177

Create the AuthorBookEdit Component 178
AuthorBookEdit.wo 178
AuthorBookEdit.java 180

Modify Session.java 182
Modify the Main Component 184

Main.wo 184
Main.java 186

Running the Application 189
Deleting Authors 189

Create the ConfirmAuthorDelete Component 190
Edit ConfirmAuthorDelete.java 191
Modify the Main Component 192
Run the Application 192

Sorting a Fetch 193

Glossary

197

Index 203

8



 Apple Computer, Inc. May 2001

C O N T E N T S

9



 Apple Computer, Inc. May 2001

Figures, Listings, and Tables

Chapter 2

Introduction to WebObjects

17

Figure 2-1 Dynamic page generation in WebObjects 21

Chapter 3

Your First Project

27

Figure 3-1 The New Project Assistant 29
Figure 3-2 Choosing a location for the project 30
Figure 3-3 Project Builder’s main window 31
Figure 3-4 The HelloWebObjects application in action 35

Chapter 4

Developing Dynamic Content

37

Figure 4-1 What time is it? 44
Listing 4-1 WOString’s value binding to the currentTime method in

Main.wod 43
Listing 4-2 URL that generates a new Session object 51
Listing 4-3 URL with session ID 52

Chapter 5

Managing User Input

53

Figure 5-1 The request-response loop 55
Figure 5-2 Structure of a component action URL 56
Figure 5-3 Binding the Favorite Food text field to personName 64
Figure 5-4 WOConditional elements 71
Figure 5-5 Adding a derived property 74
Listing 5-1 Example of a component action URL 56
Listing 5-2 Overriding the awake method 59
Listing 5-3 Overriding the sleep method 61
Listing 5-4 Tracing the request-response loop—the awake method 65

10



 Apple Computer, Inc. May 2001

F I G U R E S A N D T A B L E S

Listing 5-5 Tracing the request-response loop—the accessor and action
methods 66

Listing 5-6 Implementation of entryIncomplete as a derived property 74
Table 5-1 Request-response processing phases 56
Table 5-2 Request-response processing time line 57

Chapter 6

Component Communication

77

Figure 6-1 UserEdit.wo 90
Figure 6-2 Main.wo 93
Listing 6-1 Instantiating the user instance variable in the constructor of the

Main.java class 82
Listing 6-2 Main.java’s entryIncomplete method using the user instance

variable 82
Listing 6-3 User.java 85
Listing 6-4 EditUser.java’s submitChanges method 90
Listing 6-5 The noDataEntered method of the Main.java class 91
Listing 6-6 Main component’s editUser action method 92

Chapter 7

Using the Session to Manage State

95

Figure 7-1 Relationship between application and session 96
Figure 7-2 Main.wo with a WORepetition 103
Figure 7-3 The application in action 106
Listing 7-1 Session.java 100
Listing 7-2 The editUser method of the Main.java class 103
Listing 7-3 The submitChanges method of the UserEdit.java class 104
Listing 7-4 The addUser method of the Main.java class 104
Listing 7-5 The deleteUser method of the Main.java class 105

Chapter 9

Introduction to Enterprise Objects

115

Figure 9-1 The Enterprise Objects approach 117

F I G U R E S A N D T A B L E S

11



 Apple Computer, Inc. May 2001

Chapter 10

Working With Editing Contexts

123

Figure 10-1 Authors model with Authors entity 133
Figure 10-2 Main.wo with elements to maintain author information 140
Figure 10-3 The Authors application 146
Figure 10-4 EOModeler’s Data Browser 147
Figure 10-5 Data Browser using filter 148
Listing 10-1 The constructor in Main.java 141
Listing 10-2 The addAuthor method in Main.java 142
Listing 10-3 The deleteAuthor method in Main.java 143
Listing 10-4 The editAuthor method in Main.java 144
Listing 10-5 The updateAuthor method in Main.java 144
Listing 10-6 The saveChanges method in Main.java 144
Listing 10-7 The revertChanges method in Main.java 145
Listing 10-8 Fetch specification that uses sort orderings 149

Chapter 11

Using Custom Objects

151

Figure 11-1 Main.wo after adding the fullName derived property to
Author.java 160

Figure 11-2 Main.wo using the fullName derived property 161
Figure 11-3 The Authors application using the fullName method to display

author information 162
Listing 11-1 Author.java generated by EOModeler 154
Listing 11-2 Main.java modified to use Author class instead of

EOGenericRecord 156
Listing 11-3 The fullName method in Author.java 159
Listing 11-4 The constructor in Author.java—setting default value for

lastName 163

Chapter 12

Working With Relationships

165

Figure 12-1 Relationships in the Authors model 171
Figure 12-2 FileMerge window 175
Figure 12-3 FileMerge window—adding fullName method to new

Author.java 176
Figure 12-4 AuthorBookEdit.wo 180

12



 Apple Computer, Inc. May 2001

F I G U R E S A N D T A B L E S

Figure 12-5 Main.wo with the editBooks action and the Books
WOHyperlink 186

Figure 12-6 ConfirmAuthorDelete.wo 191
Figure 12-7 The ConfirmAuthorDelete component in action 193
Listing 12-1 The methods that implement the author relationship in

Book.java 177
Listing 12-2 The methods that implement the books relationship in

Author.java 177
Listing 12-3 The deleteBook method in AuthorBooEdit.java 181
Listing 12-4 The addBook method in AuthorBookEdit.java 181
Listing 12-5 Method calls to add a book and set its author 182
Listing 12-6 The constructor in Session.java 182
Listing 12-7 The fetchAuthorList method in Session.java 183
Listing 12-8 The addAuthor method in Session.java 183
Listing 12-9 The deleteAuthor method in Session.java 184
Listing 12-10 The constructor in Main.java 187
Listing 12-11 The addAuthor method in Main.java—uses the addAuthor method

in Session.java 187
Listing 12-12 The deleteAuthor method in Main.java—uses the deleteAuthor

method in Session.java 187
Listing 12-13 The editBooks method in Main.java—sends Author object to

AuthorBookEdit component 188
Listing 12-14 The revertChanges method in Main.java—uses default editing

context and the fetchAuthorList method in Session.java 188
Listing 12-15 The deleteAuthor method in ConfirmAuthorDelete.java 191
Listing 12-16 The deleteAuthor method in Main.java—returns

ConfirmAuthorDelete component 192
Listing 12-17 The sortAuthorList method in Session.java 194

Why Read This Book

13



 Apple Computer, Inc. May 2001

C H A P T E R 1

1 About This Book

WebObjects is an application server with tools, technologies, and capabilities to
create internet and intranet applications. It has an object-oriented architecture that
promotes quick development of reusable components. WebObjects is extremely
scalable and supports high transaction volumes.

This book introduces the architecture, development tools, and use of the
WebObjects HTML-based system.

Why Read This Book

Discovering WebObjects for HTML

 is written for developers who want to start
developing applications using WebObjects. There are other approaches for
developing WebObjects applications. For more information on them, see

Inside
WebObjects: WebObjects Overview

.

You should read this book if you wish to learn to maintain or develop WebObjects
HTML applications and currently are at a beginner or intermediate level of
experience with the WebObjects system.

This book will lead you on a hands-on exploration of the WebObjects programming
environment. Through examples paired with explanations of the theory behind
them, you’ll learn to construct dynamic applications that allow your users to view
and modify data from your databases.

This book has two main parts. The first part shows you how to use the WebObjects’s
tools to develop a Web application. You learn how to

14

Assumptions



 Apple Computer, Inc. May 2001

C H A P T E R 1

About This Book

�

use the WebObjects development environment, including Project Builder and
WebObjects Builder

�

 compile and run WebObjects applications

�

manipulate user input in your programs

�

create your own components and reuse them in your applications

The second part introduces the Enterprise Object technology and the use of
databases as a persistent storage mechanism. In it you learn about

�

basic database architecture

�

the object-to-database connection

�

designing your database schema

�

using editing contexts to collect changes

Assumptions

As of version 5, the WebObjects runtime is implemented entirely in Java. This
document assumes you are familiar with Java and with the basic principles of
object-oriented programming. While object-oriented programming experience is
not necessary, WebObjects is an extensively object-based system. Familiarity with
the Sun standard Java libraries beyond the basic object types like String and Integer
is not necessary, because the Foundation libraries in WebObjects provide most of
the functionality your WebObjects applications utilize.

Some familiarity with database architecture and OODBs (object oriented databases)
is beneficial, but not necessary. The Enterprise Object technology abstracts most of
the specific details of databases away from your job as a developer, but an
understanding of the underlying structure is always useful. A basic explanation of
database architecture and usage is given in “Database Basics” (page 109).

This book has the following chapters:

�

“Introduction to WebObjects” (page 17) introduces WebObjects’s technologies
and explains how they fit together.

C H A P T E R 1

About This Book

Assumptions

15



 Apple Computer, Inc. May 2001

�

“Your First Project” (page 27) guides you through the creation of a simple
WebObjects application project.

�

“Developing Dynamic Content” (page 37) introduces the use of WebObjects
elements to display dynamic data.

�

“Managing User Input” (page 53) shows you the steps WebObjects takes when
processing a request from a web browser. It also introduces the use of
conditional-display WebObjects elements and derived properties.

�

“Component Communication” (page 77) shows how to send data from one
component to another to maintain state.

�

“Using the Session to Manage State” (page 95) introduces the use of the Session
object to maintain state in a centralized location. It also shows the benefits of
designing reusable components.

�

“Database Basics” (page 109) provides a brief introduction to essential database
concepts.

�

“Introduction to Enterprise Objects” (page 115) shows the layers of an
Enterprise Objects application and explains the role of the model.

�

“Working With Editing Contexts” (page 123) guides you through the creation of
a database with OpenBase Manager and a model with EOModeler. It shows you
how to define an entity and how to create a database table based on an entity’s
definition. The chapter also shows how to perform data access using the
Enterprise Object technology.

�

“Using Custom Objects” (page 151) guides you through the process of
generating Java class files to add custom logic to enterprise objects.

�

“Working With Relationships” (page 165) shows you how to create
relationships between entities in EOModeler and how WebObjects implements
those relationships in your application. It also shows you how to define a fetch
specification and how to sort fetched data.

16

Further Reading



 Apple Computer, Inc. May 2001

C H A P T E R 1

About This Book

Further Reading

You can access a wealth of information at http://www.apple.com/developer. It
provides links to resources that developers can use to obtain up-to-date information
on WebObjects technologies, documentation, and related issues.

17



 Apple Computer, Inc. May 2001

C H A P T E R 2

2 Introduction to WebObjects

The Web started out as a means of disseminating static documents interconnected
via hyperlinks. With its steady commercialization have come much greater
demands on website developers. Today, it’s not uncommon for a website to connect
to a database, display dynamic data, take user input, and offer a reasonable
facsimile of a desktop application.

Typically, each of these features is added by a developer at the behest of the
customers or site owner. Dozens of incompatible mechanisms for solving the same
problems exist, and any given site is a house of cards held together by expensive
and frequent programmer intervention.

Another issue, all to real for many IS (Information Systems) managers, is the need
to access data stored in databases from different vendors. Traditionally, developers
have had to include custom code in their applications to be able to communicate
efficiently with each database. Even if an organization standardizes on one
database, if the need ever arises to upgrade due to performance or business reasons,
then the custom code used to access the database becomes obsolete, slowing the
transition process.

WebObjects solves all the common problems—dynamic page generation, user
input, state management, interface with databases—that usually consume most of
a developer’s time, instead freeing the developer to spend her time constructing the
logic that actually makes the application different.

In this chapter, you

�

learn how WebObjects saves you from reinventing the wheel

�

discover the features of WebObjects that make it a superior application
development system

�

learn about WebObjects’s development tools

18

WebObjects Features



 Apple Computer, Inc. May 2001

C H A P T E R 2

Introduction to WebObjects

WebObjects Features

WebObjects solves many of the basic problems required for developing Web
applications. Frequently, programmers reinvent the wheel to provide required
features and capabilities to their applications, or invest a lot of work integrating
partial solutions. WebObjects comes with much of the logic needed by a Web
application, and provides an infrastructure that enables developers to work both
effectively

and

 efficiently.

Database Access and Independence

Almost any service beyond providing access to organized, static data relies on a
database. Hence, it is very important to make database access powerful and
efficient, both in use and implementation. WebObjects relies on the Enterprise
Objects layer, which represents your database using Java objects (enterprise objects)
with custom behavior and validation rules.

Other solutions for database access rely on technology such as embedding database
access code, like SQL (Structured Query Language), within the Web pages
themselves, which makes modifying the application much more difficult.

The Enterprise Object technology handles the dirty work of database access tasks,
like caching, fetching, saving, and relationship modeling, allowing you to
concentrate on the implementation of your custom business logic. It even constructs
the basic Java code required for your objects—you modify this code to add
specialized logic, appropriate to your application. By providing this level of object
abstraction, Enterprise Objects allows you to modify your database schema or even
move to a totally different storage mechanism without any code modification.

Scalability

WebObjects is scalable at several levels, from development to deployment.

C H A P T E R 2

Introduction to WebObjects

WebObjects Features

19



 Apple Computer, Inc. May 2001

At the development level, individual pages and components can be developed in a
modular fashion and reused, because they are each individual Java objects or
WebObjects components. Further, a project can be easily broken into frameworks
and products to facilitate code sharing and multiple-developer organization.

The WebObjects system itself scales over a broad range of user load, without any
developer intervention. When a new request is made to your application, a new
session is created, which encapsulates the activity and changes of a particular user.
Caches are maintained by the application as well as by each of its sessions (a session
represents the activity of one user) to speed response generation and minimize
database access. In addition, WebObjects automatically caches component
definitions to minimize the need to read files from disk. For more detail on session
and state management see “Using the Session to Manage State” (page 95).

At deployment, WebObjects offers a linear scaling mechanism. The simplest
deployment system is one computer running a Web server, WebObjects, and a
database server. As your needs increase, the database server and Web server can be
moved to other computers. Additional instances of your application can run in
parallel and use the same database transparently. If demand increases further,
additional application servers can be added using the same database and Web
servers. WebObjects even automatically adds new application servers to its load
balancing system to ensure the most efficient access possible. (See

Deploying
WebObjects Applications

 for more information on deployment.)

Object Orientation

Experience has demonstrated that object orientation is a very useful paradigm for
many development projects. WebObjects is designed on an object-oriented model,
with every part of the system, from components to the process of generating pages
itself, organized using an object model.

As a developer, you gain many benefits from this model. You can customize the
process of page generation by adding your logic to standard methods, which are
invoked at determined stages. This is possible because all WebObjects components
inherit from the WOComponent class. A

component

 is an object that encompasses
the look and behavior of a Web page, or a portion of one.

Pages or components that share behavior—for example, a component that displays
search results for each of the entities you have in your database—can gain the usual
benefits of inheritance, saving you from writing duplicate code and all the attendant
inefficiencies.

20

WebObjects Features



 Apple Computer, Inc. May 2001

C H A P T E R 2

Introduction to WebObjects

You are also freed from the need to conceive of your data as anything but first-class
objects. Rather than thinking about tables, columns, and rows in a database when
retrieving information or manipulating relationships, you manage data by creating
objects or arrays of objects, and by invoking their methods. The Enterprise Object
technology manipulates the database for you to reflect your changes.

Dynamic Publishing

The most basic websites are composed of static pages in HTML that are served to a
user’s browser. These pages change infrequently, and the scope of the changes is
such that it is practical to manually update the documents on the rare occasion that
they change.

Increasingly though, users need more dynamic or frequently updated content via
the Web. Weather reports, news stories, and stock quotes change frequently, and it’s
impractical or impossible to alter static text documents on a Web server to reflect
new information often enough to be useful. Instead, special software generates
HTML (hypertext markup language) code on the fly. (The pages generated can
include current information obtained from a data source, often a relational
database.) This code is then sent to a user’s Web browser. Figure 2-1 illustrates how
requests by a Web browser are processed to generate a response page.

C H A P T E R 2

Introduction to WebObjects

WebObjects Features

21



 Apple Computer, Inc. May 2001

Figure 2-1

Dynamic page generation in WebObjects

Each page in a WebObjects application is created as a template. These templates can
contain static text like a regular Web page, other templates in a recursive structure,
or special WebObjects tags. These tags are similar to HTML tags, but are instead
associated with a WebObjects element, whose attributes can be bound to methods
or instance variables of your Java class. For more on components, elements, and
attributes see “The Main Component” (page 39).

Relational
database

Web server

WebObjects
adaptor

HTTP HTML

HTTP HTML

SQL data

Web
browser

WebObjects
application

EOF

22

WebObjects Features



 Apple Computer, Inc. May 2001

C H A P T E R 2

Introduction to WebObjects

When the template is requested, WebObjects fills in the missing data represented by
the tags by calling the methods associated with the element’s attributes and
inserting the result into the returned HTML code on the fly. The called methods
might access a database, perform calculations, or carry out any other custom logic
you have defined.

Several other common idioms exist for dynamic page generation. These range from
various third-party solutions to hand-rolled Perl or Java servlet systems. Few offer
the easy database access, or close association with Java logic that WebObjects
provides. Another problem common to most other solutions is a lack of scalability—
page-based logic rapidly becomes impossible to maintain as the size of the site
increases.

User Input

There is a qualitative change in the kind of services your application can offer to its
users when it no longer relies solely on navigation for control. By allowing the users
of your application to input data, you increase the application’s scope dramatically
beyond that of solely sharing already extant information. For example, you have to
come up with logic that validates the data the user enters, so that your database
does not become corrupted.

A few mechanisms for user input are in common use. Most involve encoding the
data into a string that is attached to the URL (Uniform Resource Locator) of the page
the user requests, and parsing it on the server end via a custom program written to
use the CGI (Common Gateway Interface) protocol.

WebObjects instead follows the same paradigm used for dynamic page generation.
Standard HTML form elements can be associated with variables and methods in
your Java code and, when the user submits a form, the methods indicated are called
with the user-entered data as an argument. Your methods can take any action you
determine to record this input—and if you associate a form element with a database
field via the enterprise object property representing it, user input is recorded in the
database automatically. (See

WebObjects Programming Topics

 in

http://

developer.apple.com/techpubs/webobjects/Topics/TopicsTOC.html

 for more
information on enterprise objects.)

C H A P T E R 2

Introduction to WebObjects

Development Tools

23



 Apple Computer, Inc. May 2001

Client-Server Applications

One of the most pressing issues in Web application development is the need to come
up with ways of maintaining state—information about the user’s session, her
interaction with the application during a given period—between requests. Because
HTTP (Hypertext Transfer Protocol) is a stateless protocol, there is no connection
maintained between the user’s browser and the Web server. This leaves the
responsibility for maintaining state up to you.

In a desktop application, the notion of state is implicit: there is only one user. In a
Web application, however, there may be hundreds of simultaneous users.

There are two ways of maintaining state in a Web application: using cookies and
customizing URLs.

When

cookies

 are used, information is stored on a Web browser (the client) by the
Web server. When the server needs to determine the current state of a client, it
retrieves the cookie. The drawback of this approach is that Web browsers can be
configured to refuse cookies. In such cases, the application’s functionality can be
severely limited.

To ensure that state can be maintained, whether cookies are enabled or not on the
client, many Web applications use customized URLs, in which they add the kind of
information that would otherwise be stored on a cookie.

WebObjects can maintain state using either of these approaches. However, you
don’t have to worry about which one is actually used. All you do is store the
required state information in an instance of the Session class. When a request is
processed, WebObjects automatically activates the Session instance associated with
the user who initiated the request (the fact that such information was retrieved from
a cookie or from the URL is transparent to you). See “Using the Session to Manage
State” (page 95) for more information.

Development Tools

For the most part you interact with the WebObjects development environment via
three tools: Project Builder, WebObjects Builder, and EOModeler.

24

Development Tools
  Apple Computer, Inc. May 2001

C H A P T E R 2

Introduction to WebObjects

Project Builder

Project Builder is your primary WebObjects development tool. It provides an
integrated development environment that allows you to edit code, organize
resources, and compile your project, as well as facilitate your work with other
programs like WebObjects Builder when you edit your WebObjects components.
Project Builder is described in “Project Builder” (page 27).

WebObjects Builder

WebObjects Builder is a specialized application for editing WebObjects
components. It handles editing the HTML file as well as the WOD (WebObjects
data) file that controls the connection between your HTML components and your
Java code. WebObjects Builder is introduced in “The Main Component” (page 39).

EOModeler

EOModeler is a tool for constructing a model that relates your database structure to
Java objects. As such, it’s only used in WebObjects programs that perform database
access. With EOModeler you can create a model in two ways:

� Reverse-engineer an existing database schema.

EOModeler reads your database’s schema and creates a model from it.

� Create the model from scratch.

C H A P T E R 2

Introduction to WebObjects

Development Tools 25
  Apple Computer, Inc. May 2001

You can create a new model from scratch by defining the entities, attributes, and
relationships that represent your data model. You can then have EOModeler
create the underlying tables. This is the approach used in “Creating the Authors
Model” (page 125).

Constructing a good model is a very important part of developing a
database-enabled WebObjects application. With a properly constructed model, an
application practically writes itself. See “The Model” (page 121) for more
information.

26 Development Tools
  Apple Computer, Inc. May 2001

C H A P T E R 2

Introduction to WebObjects

Project Builder 27
  Apple Computer, Inc. May 2001

C H A P T E R 3

3 Your First Project

WebObjects is a large system, built of many complex layers. Fortunately, those
layers are largely self contained, allowing you to ignore some complexity until you
find you want more control over specific processes. This allows you to construct a
simple WebObjects application that is fully functional, without needing to have
complete knowledge of the underlying system. As you add more features to the
demonstration applications you create, you will explore the WebObjects
frameworks to a greater depth.

Most of your access to the WebObjects system will be through the tools you use to
create applications in it—Project Builder, WebObjects Builder, and for
database-enabled applications, EOModeler.

In this chapter, you

� run Project Builder and perform initial setup

� learn about the components of a project

� use the New Project Assistant

� learn about the parts of the Project Builder editing window

� build and run a simple application

Project Builder

While developing a WebObjects application, you spend most of your time working
with the Project Builder application. It allows you to organize your project and all
the associated files, compile and run your project, and edit your source code.

28 Hello WebObjects
  Apple Computer, Inc. May 2001

C H A P T E R 3

Your First Project

Project Builder is installed as part of the developer package. It is located in the /
Developer/Applications directory.

Hello WebObjects

There is a place for breaking with tradition, but this is not it: your first WebObjects
application will display “Hello World!” in your browser. Though this project is
trivial, it does serve as an example with which to examine the interface of Project
Builder. Also, a successful build and launch verifies that your development
environment is correctly installed and configured.

Launch Project Builder

1. Navigate to the /Developer/Applications directory.

2. Double-click the Project Builder icon.

The first time you run Project Builder, you are greeted by a setup assistant that
walks you through some of the basic configuration settings of Project Builder. At
this point, you could customize the build system used to compile your projects,
but for now, accept the default options on each pane.

Using the New Project Assistant
When you first launch Project Builder, you see only its menu bar. To create a project
to work in, choose New Project from the File menu. The Project Builder Assistant
appears, walking you through a few steps to create a new project.

C H A P T E R 3

Your First Project

Hello WebObjects 29
  Apple Computer, Inc. May 2001

Figure 3-1 The New Project Assistant

There are several project types to choose from. Each starts out with a slightly
different set of files and configuration to facilitate particular types of applications,
from command-line tools to desktop applications. The following are two types of
WebObjects project you can develop:

� WebObjects Application. This project type is the basic starting point for
WebObjects applications. It provides one Web page, a system for moving
resources like images to your Web server’s document root during installation,
and other basic components like the Session and Application classes.

� WebObjects Framework. A framework is a bundle of related code, resources
such as sounds and graphics, and more. You can make your applications
dependent on your frameworks as a means of sharing code between
applications. Your WebObjects applications are based on the JavaWebObjects
framework, and you can write your own as well.

Follow these steps to build your first WebObjects application project.

1. Select WebObjects Application from the list of templates and click Next.

30 Hello WebObjects
  Apple Computer, Inc. May 2001

C H A P T E R 3

Your First Project

2. Type HelloWebObjects in the Project Name text input field.

If you don’t want to use the default project location, click Set and navigate to the
directory where you want to store your project.

Figure 3-2 Choosing a location for the project

3. Click Finish to create the project.

A window similar to the one in Figure 3-3 appears.

C H A P T E R 3

Your First Project

Hello WebObjects 31
  Apple Computer, Inc. May 2001

The Main Window

Figure 3-3 Project Builder’s main window

The Project Builder main window organizes all the files in your project and
provides all the tools you need to edit, build, and debug them.

When you first create a project, Project Builder displays the release notes in the code
editor, which is the pane where you usually edit files. This document contains
information about the latest release of Project Builder. You should read it carefully.

Build project

Groups & Files list

Code editor

Clean up project

Run application

Target menu

32 Hello WebObjects
  Apple Computer, Inc. May 2001

C H A P T E R 3

Your First Project

The left pane is a tabbed pane used for organization. In the Groups & Files pane,
which is initially visible, there are several groups of files, each with a disclosure
triangle.

� Classes

This group initially contains the .java files for the Application, Session, and
DirectAction classes that your application uses. You can customize your
application by changing these files. In addition, when you add new classes to
your project, they are stored here by default.

� Web Components

Each Web page or component you create is stored within its own subgroup in
the Web Components group. Each subgroup contains the files that define the
HTML representation and WebObjects behavior for each component. Initially,
only the Main subgroup is present.

Inside the Main subgroup you find three items: Main.wo, Main.java , and
Main.api. They define the look and behavior of the Main component.

� Resources

Graphics, sounds, and movies for your components are stored in this folder. In
database-enabled applications, the model files (with the extension .eomodeld)
are stored here.

� Web Server Resources

Some resources may be referenced not only by your WebObjects applications
but also by static pages in other parts of the site. Resources in this folder are
moved to a location outside of the application wrapper, where they can be
accessed by other means as well.

� Frameworks

Every WebObjects project is dependent on at least the JavaWebObjects
framework, which contains the code behind WebObjects. You can add
additional frameworks to your project by choosing Project > Add Files.

� Documentation

Documentation for your project can be organized by Project Builder.

� Products

C H A P T E R 3

Your First Project

Hello WebObjects 33
  Apple Computer, Inc. May 2001

The actual files created by compiling your application are listed under this
group. It includes the executable, an organized tree of resources for components,
and localized versions of the components themselves.

The other three panes, Bookmarks, Targets, and Breakpoints, are explained in
greater detail later in the book.

Modifying the Main Component
Now you’ll use WebObjects Builder to modify the Main component.

1. Open Main.wo.

Double-click the Main.wo component in the Main subgroup in the Web
Components group in the Groups & Files list in Project Builder. The WebObjects
Builder application opens and displays a window for Main.wo.

2. Modify Main.wo.

Enter Hello World! in the content pane.

34 Hello WebObjects
  Apple Computer, Inc. May 2001

C H A P T E R 3

Your First Project

3. Save Main.wo.

Choose File > Save.

Building the Project
All that remains is to compile the project and run it. When you start the build
process, Project Builder does more than compile the Java bytecode from your files.
First, only files that have changed since the last build are compiled, to save time.
Project Builder also gathers all the resources required for your project, organizes
them for your Web server, and compresses your Java class files into a JAR (Java
Archive) file.

When you choose Build from the Build menu, the build pane appears so you can
watch the progress of the build. This is also the pane that displays Java compilation
errors if your project has any, but its output is frequently very useful even when it
doesn’t contain error messages.

In Project Builder, choose Build > Build or click in the main window.

Because you didn’t modify any Java code, you shouldn’t encounter any compilation
errors. When the compilation progress bar is complete, you’re ready to run your
project.

Running the Project
Unless you changed the default location when you first ran Project Builder, you
now have a bundle called HelloWebObjects.woa in the build directory at the top level
of your project’s directory.

Choose Debug > Run Executable or click in Project Builder’s main window.

C H A P T E R 3

Your First Project

Hello WebObjects 35
  Apple Computer, Inc. May 2001

Since your application is already built, the Run pane appears immediately,
displaying the output from your application as it runs:

Reading MacOSClassPath.txt ...

Launching HelloWebObjects.woa ...

. . .

Creating adaptor of class WODefaultAdaptor listening on port -1 with a listen

queue size of 128 and 2 WOWorkerThreads.

Creating LifebeatThread now with: HelloWebObjects -1 1085 30000

Welcome to HelloWebObjects!

Opening application's URL in browser:

http://localhost:49189/cgi-bin/WebObjects/HelloWebObjects

Waiting for requests...

After the last line appears, the URL shown opens automatically in your default
browser.

Figure 3-4 The HelloWebObjects application in action

36 Hello WebObjects
  Apple Computer, Inc. May 2001

C H A P T E R 3

Your First Project

37
  Apple Computer, Inc. May 2001

C H A P T E R 4

4 Developing Dynamic Content

Having dynamic content means only that the information your website or
application displays varies based on some conditions. Examples of dynamic content
include news sites, product catalogs where entries change and users can accumulate
a shopping cart of items, or online polls and statistics.

With WebObjects, you can generate your dynamic content several ways. You can
use all the programming logic you’re familiar with to determine which image to
display or what information to present; you can define templates that are filled in
from a database; you could also allow the user to enter data to be displayed.

In this chapter, you add some elements to your Web page and learn how to connect
them to Java code that you write. You also learn in general how the HTML code,
WebObjects components, and their Java classes relate to each other, and you are
introduced to the request-response loop, the system WebObjects uses to interact
with the users of your application.

In this chapter, you

� learn about the WebObjects Builder Inspector

� use WebObjects Builder to bind WOElements to your Java code

� use methods to provide dynamic data in your Web page

� learn the basics of the request-response cycle

� customize the Main component, the default entry point of your application

38 Components and Classes
  Apple Computer, Inc. May 2001

C H A P T E R 4

Developing Dynamic Content

Components and Classes

Each Web page displayed on a user’s Web browser is a WebObjects component. A
component is made up of several parts:

� HTML file. This portion of the component is mostly standard HTML code. A
component is either a complete HTML page, with <HTML> and </HTML> tags, or a
shorter segment of HTML code that can be inserted inline into another
component.

In addition to regular HTML tags and text, a component can contain special tags
used by WebObjects, the <WEBOBJECT> and </WEBOBJECT> tags. Web browsers
never see these tags because WebObjects replaces them with regular HTML
code before sending them to the browser.

� WOD file. This is the glue between your HTML file and your Java code. Every
WebObjects element used in a component has an entry in this file specifying its
parameters, such as Java methods to call for data. WOD stands for WebObjects
data.

� Java file. Every component has a Java class file associated with it. These classes
inherit from the WOComponent class, which provides all the basic functionality
a component needs. To customize behavior, you can add your own variables
and logic to intercede in the built-in system

� API file. If you design your own components for reuse, they may rely on certain
information being present in their Java code definitions. The API file lists the
parameters for your custom components.

� WOO file. Contains information about display groups, special components
used to display database information. WOO stands for WebObjects object.

The Web Components group—in the Groups & Files list in Project Builder’s main
window—lists all the components of a project. Each item is itself a subgroup named
after the component. Such groups contain the Java and API files for the component.
The HTML, WOD, and WOO files are contained in a subgroup of the component
subgroup, named using the component’s name with the .wo extension (Main.wo, for
example). The contents of the .wo group are maintained by WebObjects Builder.

C H A P T E R 4

Developing Dynamic Content

The Main Component 39
  Apple Computer, Inc. May 2001

The Main Component

By default, every WebObjects application includes a Main component. This
component, initially empty, is the first page displayed to users unless you arrange
otherwise. It can be used as the login page for the rest of your application.

The initial Main component is entirely empty. In this section, you add a method that
calculates the date to the Java class, add a WOElement to the page, and use the
WOD file to bind it all together.

Adding Java methods
First, you add a Java method to the Main.java file. This method simply returns the
current date when it is called.

1. Create a WebObjects application project and name it DateDisplay.

For details on how to create a new project see “Hello WebObjects” (page 28).

2. Select Main.java from the Groups & Files list in Project Builder’s main window.

40 The Main Component
  Apple Computer, Inc. May 2001

C H A P T E R 4

Developing Dynamic Content

3. Add the following code to the Main.java file. This is a public method that returns
the current date using the NSTimestamp class.

public NSTimestamp currentTime() {

// by default, a new NSTimestamp object is initialized

// to the current date and time

return new NSTimestamp();

}

Notice that the Main class inherits from WOComponent.

The WOComponent class defines dozens of methods needed by WebObjects.
Many of these methods are introduced later in this book.

4. Save the Main.java file by choosing File > Save.

Adding a WOString
To display dynamic text, you add a WebObjects element to the Main component.
This element is the WOString, which is used to display dynamic string data in a
page. Such strings can be the output of a Java method that returns a String object or
another object that can be converted to a String object.

C H A P T E R 4

Developing Dynamic Content

The Main Component 41
  Apple Computer, Inc. May 2001

1. Open the Main component with WebObjects Builder by double-clicking Main.wo
in Project Builder.

2. Add text and a WOString.

Enter “The current time is “ in the content editor in WebObjects Builder’s main
window.

With the cursor at the end of the new text, press the Space bar and click .

3. Open the WOString Binding Inspector.

Select the WOString element and click . The WOString Binding Inspector
appears.

If the Inspector appears, but doesn’t look like the one shown, click the WOString
you just inserted. The Inspector displays information about the element that is
currently selected.

The Inspector displays the attributes for WOString elements. Each of them can
be set, either to static values or by binding them to instance variables or methods
in your code, which provide a value at runtime.

Notice that the value attribute is displayed in red. This means that this binding
is required. In this case, the value attribute’s binding produces the text that the
WOString displays, and the other attributes affect how the string is displayed.
You use this WOString to display the current time.

42 The Main Component
  Apple Computer, Inc. May 2001

C H A P T E R 4

Developing Dynamic Content

4. Bind the WOString’s value attribute to the currentTime method.

Notice that the name of the currentTime method you entered in Main.java is
listed in the Main list, in the bottom-left corner of the Main.wo window.

Drag a connection from the currentTime method to the WOString element in the
content editor.

While WOString has several attributes, WebObjects Builder assumes you want
to bind the value attribute because it’s the one most commonly used in
WOStrings.

5. Save Main.wo.

The currentTime method is now bound to the WOString on the page. This
connection is recorded in the WOD file. See Listing 4-1 (page 43).

C H A P T E R 4

Developing Dynamic Content

HTML and WOD Files 43
  Apple Computer, Inc. May 2001

HTML and WOD Files

The connection you just made on the WOString element is implemented in the
WOD file. You can examine the HTML code and WOD files in Project Builder,
within the Main.wo subgroup.

In the HTML file, the <WEBOBJECT> tag after your static text represents the location
where the WOString inserts the value returned from your method. This is a simple
behavior, but some WebObjects elements offer much more complex logic.

<BODY BGCOLOR=#FFFFFF>

The current time is <WEBOBJECT NAME=String1></WEBOBJECT>

</BODY>

Notice that the tag reads <WEBOBJECT NAME=String1>. The only entry in the WOD file
has the same name.

Listing 4-1 WOString’s value binding to the currentTime method in Main.wod

String1: WOString {

value = currentTime;

}

The entry has only one listed binding: the connection between the value attribute
and the currentTime method. This method is called whenever the WOString needs
to determine what value to display.

Build and Run the Application

Now that you’ve customized the Main component, you can run the application and
watch your logic in action.

44 Response Generation
  Apple Computer, Inc. May 2001

C H A P T E R 4

Developing Dynamic Content

Choose Build > Build and Run.

A page similar to the one in Figure 4-1 appears after Project Builder builds and starts
your application.

Figure 4-1 What time is it?

Response Generation

When you run the DateDisplay application, the page displayed by your browser
has replaced the WOString you added to the Main component with the current date
and time. If you reload the page, the date and time changes. WebObjects assembles
the page dynamically during the request-response cycle.

When your browser requests the URL corresponding to your WebObjects
application, your Web server hands control to the WebObjects adaptor. This
program goes through several steps in generating the response it returns.

C H A P T E R 4

Developing Dynamic Content

Response Generation 45
  Apple Computer, Inc. May 2001

1. Reading the HTML file

Much like a regular Web server, WebObjects first reads an HTML file. Unlike a
regular Web server, though, WebObjects parses a <WEBOBJECT> tag before
returning it to the Web server.

2. Merging the WOD file

When a <WEBOBJECT> tag is encountered, the WOD file for the component is
consulted. All the WebObjects tags in an HTML file are named, and each one is
listed by its name in the WOD file.

Each <WEBOBJECT> tag represents a WebObjects component. When a <WEBOBJECT>
tag needs to be evaluated, the entire response generation process is invoked
recursively on the new component, continuing as many times as necessary. The
Main component was added to your project automatically by the Project Builder
Assistant. You can create and use your own components (pages) as you’ll see
later in “Defining a New Component” (page 84).

3. Accessing Java methods

Each type of WebObjects component has special logic for constructing the
HTML code to return to the Web server. Customization of this process is done
with attributes defined by the component’s developer. Each binding in a WOD
file can be either static or dynamic. If a binding is static, the value supplied is
used directly.

If a binding is dynamic—that is, an attribute is bound to a Java method or
instance variable—then WebObjects invokes the method or accesses the instance
variable to obtain the value at runtime. In the example above, when the
WOString is evaluated, it calls the method named in its value binding
(currentTime) to get the value to display. The implementation of WOString
turns the NSTimestamp object into a string and displays it in your Web browser.

This process takes place each time your browser requests the Main component. If
you reload the page, the method is invoked again and a new date and time value is
displayed.

For more information on the request-response loop, see “Request Processing”
(page 54).

46 Maintaining State in the Component
  Apple Computer, Inc. May 2001

C H A P T E R 4

Developing Dynamic Content

Maintaining State in the Component

Understanding the connection between a component and its Java class file is an
important part of WebObjects development. Not only do you associate methods
with the component to create dynamic content in this fashion, but you can also use
the methods provided by the WOComponent class to maintain state for a
component.

When you add methods to a component in WebObjects Builder, you are actually
editing the component’s Java file. When you modify how the component looks or
add display elements, you are editing HTML code. A WebObjects component is a
high-level view of both the HTML code and the Java class that describe a Web page,
or part of one. After using WebObjects Builder to define the major parts of a
component, you can add details by editing the HTML code manually and by
modifying its Java file.

When your application runs, components are instantiated as needed. That is, each
component is also an object in your application. For example, when the DateDisplay
application launches, a Main object is created. As the component’s content is
determined by WebObjects, methods in Main.java are used to provide the data for
its dynamic elements, in this case the WOString that displays the current time.
When it’s time for WebObjects to add the content for the WOString, it looks up the
element’s value binding. In the example, value is bound to the currentTime method.
WebObjects then invokes the currentTime method, which returns the current time.

An instance of a component “survives” at least for two cycles of the
request-response loop: in the first cycle the page is rendered while in the second
cycle the component determines which component to display next. If the
component to be displayed is different from the first one, the latter is discarded
while an instance of the new component is created. However, if the component to
display is the same one, then the instance “lives on.” You can use instance variables
in your component’s class to store information and keep track of the user’s behavior
as she interacts with your application.

In this case, you’ll add a variable to the Main component and add code to increment
it each time the page is displayed. You can use this variable to show the number
times the page has been loaded by a specific user in the session.

C H A P T E R 4

Developing Dynamic Content

Maintaining State in the Component 47
  Apple Computer, Inc. May 2001

To keep track of the number of times the currentTime method has been called, you
need to add an integer instance variable to the Main.java file, increment it each time
the page is loaded, and add a means of telling the page to refresh itself.

Adding the Variable to Count Method Calls

1. Open Main.wo in WebObjects Builder (if it’s not already open) by double-clicking
it in Project Builder’s main window.

2. Choose Add Key from the Edit Source menu at the bottom-left corner of the
Main.wo window.

3. Add a key of type int named loadCount.

4. Examine the Java file in Project Builder to confirm that the variable was added.

public class Main extends WOComponent {

protected int loadCount;

48 Maintaining State in the Component
  Apple Computer, Inc. May 2001

C H A P T E R 4

Developing Dynamic Content

Displaying the Count
To display the load count on the component, you need to add another WOString to
the component.

1. Add a label and a WOString to the component.

a. Enter “Page load count: ” below the line that displays the current time.

b. Add a WOString to the right of the label.

2. Bind the loadCount variable to the new WOString’s value attribute.

Increasing the Variable’s Value
Modify the currentTime method so it increments the loadCount variable each time
it is called. Since WebObjects calls the method each time the page needs to be
displayed, loadCount is increased by one each time.

public NSTimestamp currentTime() {

loadCount++;

return new NSTimestamp();

C H A P T E R 4

Developing Dynamic Content

Maintaining State in the Component 49
  Apple Computer, Inc. May 2001

}

Refreshing the Page
Finally, you need to add a way to reload the page. In WebObjects, regular
hyperlinks (WOHyperlinks) can call Java methods on your components. Action
methods are covered in greater detail in “Request Processing” (page 54). For now,
you only need to add a method that simply reloads the current page.

1. Add the action method.

Open the Main component in WebObjects Builder and choose Add Action from
the Edit Source menu.

a. Name the action refreshTime.

b. Select null from the “Page returned” pop-up menu.

The value returned by an action method represents the next page
(component) to be displayed. When you return null, the current page is
redrawn. In a later task, you learn how to return a new component.

c. Click Add.

2. Add a hyperlink.

Position the cursor below the line where the load count is displayed.

Choose WebObjects > WOHyperlink, or click .

By default, the text for a new link is “Hyperlink”. You can replace this by
selecting the text and typing something more appropriate over it, such as
“Refresh Time”.

3. Connect the refreshTime method to the WOHyperlink.

50 Maintaining State in the Component
  Apple Computer, Inc. May 2001

C H A P T E R 4

Developing Dynamic Content

Much like a WOString, a WOHyperlink has several attributes. In this case, you
bind the refreshTime method to the action attribute of the WOHyperlink.

Drag from the refreshTime method in the Main list to the WOHyperlink. When
you release the mouse button, you will see a pop-up list of attributes. Choose the
action attribute to indicate that you want the refreshTime method called when
the link is clicked.

4. Save Main.wo.

The Counter in Action
Build and run the DateDisplay application. When your browser loads the page,
you’ll see that the counter has been increased to 1. If you click Refresh Page, the time
and the load count are updated.

C H A P T E R 4

Developing Dynamic Content

Maintaining State in the Component 51
  Apple Computer, Inc. May 2001

This same counter instance variable is increased by one each time you use the link
because WebObjects created a Main object and associated it with your browser
window. Each time you interact with the application, by clicking Refresh Page, the
same object is used. If you open another browser window and connect to the
application again using the URL shown in Project Builder’s Run pane, a separate
instance of Main is created and associated with that window. From then on you can
work with both windows individually. As a matter of fact, not only is a new
instance of Main created, a new Session object is created as well.

WebObjects determines that a new Session object needs to be created when the
incoming URL does not contain a session ID. The first time you connect to the
application using a URL like the one in Listing 4-2, WebObjects creates a Session
object and assigns it a session ID and other information. That information is added
to the URL returned to your browser together with the Web page to be displayed
(see Listing 4-3 (page 52)). When you send another request from your browser (by
clicking Refresh Page, for example) WebObjects uses the session ID encoded in the
URL to locate the Session object that is to process the request. This is the default
mechanism WebObjects uses to keep track of the state of each user. For more on
state management see “Client-Server Applications” (page 23) and “Using the
Session to Manage State” (page 95).

Listing 4-2 URL that generates a new Session object

http://foo.com:49361/cgi-bin/WebObjects/DateDisplay

52 Further Exploration
  Apple Computer, Inc. May 2001

C H A P T E R 4

Developing Dynamic Content

Listing 4-3 URL with session ID

http://foo.com:49361/cgi-bin/WebObjects/DateDisplay.woa/wo/

whcV5sauLNtG8Tfh6xCuvM/0.1

Further Exploration

You’ve learned how to use some of WebObjects’s tools, and how to add elements
and bind them to your Java code using WebObjects Builder. You also learned how
to display dynamic content based on Java code, and maintain state data from one
request to the next. Feel free to explore WebObjects Builder to learn more. Here are
a few suggested exercises:

� All the usual attributes of a Web page—title, background color, font size, and
the like–can be maintained in WebObjects Builder. Make the DateDisplay
application a bit smoother around the edges by setting the page title and
customizing the text displayed. If a WOString is inside another HTML tag,
the WOString is affected just like ordinary text.

� The NSTimestamp class displays as an ANSI standard date by default. If you
examine the WOString element in the Inspector, you’ll see a binding called
dateFormat, which you can use to control how the time and date are displayed.

� What happens if the WOString that displays the value of the loadCount instance
variable is placed before the WOString that displays the time (and updates
loadCount)? WebObjects parses the WOStrings in the order in which they
appear, so loadCount is 0 the first time it is displayed.

53
  Apple Computer, Inc. May 2001

C H A P T E R 5

5 Managing User Input

WebObjects’s ability to dynamically display information is sufficient for some Web
applications, but most require more complex interaction with the user.

WebObjects provides a system for associating display and user input elements on
a Web page with your Java variables and methods. You’ve seen how easy it is to
display your dynamic data in Web pages. In this chapter, you learn how to take data
from your application’s users.

In this chapter, you

� learn the system WebObjects uses to take in user input

� take input from the user via form elements like WOForm and WOTextField

� use WOConditionals for the conditional display of elements

� learn to construct derived properties with custom logic

User input in WebObjects is based on the basic HTML input elements—forms, text
input fields, and so on. Connecting these elements to variables and methods is very
similar to the process used to bind the value attribute of WOStrings.

You place components that mirror HTML form elements into your components.
These components use your Java code to generate HTML code that Web browsers
can interpret and display, and are programmed to translate user inputs or selections
back into Java variables. The system by which values are taken from these elements
and communicated to your Java code is called request processing.

54 Request Processing
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

Request Processing

Each action taken by a user is communicated to your application via the Web server
and the WebObjects adaptor. All the pertinent details of the user’s action—the
contents of text fields, the state of radio buttons and checkboxes, and the selections
in pop-up menus—as well as information about the session and button or link
activated is encoded in the HTTP (Hypertext Transfer Protocol) request.

The request is decoded by the action of the WebObjects adaptor and default
behaviors in the application. This decoding process, which culminates in the
generation of a response page to be returned to the Web browser, is called the
request-response loop. See Figure 5-1.

C H A P T E R 5

Managing User Input

Request Processing 55
  Apple Computer, Inc. May 2001

Figure 5-1 The request-response loop

WebObjects has two request processing models: component actions and direct
actions.

� Component actions. This model enables you to maintain state in your
applications; therefore, it requires and uses sessions. By default, WebObjects
applications use this model and it’s the one explained in this chapter.

� Direct actions. This model is used by applications that don’t require state
management (such as search engines, product catalogs, document libraries, and
dynamic publishing). Applications that use this model don’t have sessions by
default.

As Figure 5-2 shows, a component action request URL contains all the information
necessary for WebObjects to reconstruct the state the session and components were
in when a page was last generated for a given user. Listing 5-1 shows an example of
a component action URL.

Web Browser HTTP Server WebObjects Adaptor WebObjects Applications

Response
page

User
sees the
next page

Request

2. Invoke
 action

Response

1. Take value
from request

Request

Response 3. Generate
response

Request
page

User
performs
an action

Request
component

Returns
response
component

Response
component

Generates
response
page

56 Request Processing
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

Figure 5-2 Structure of a component action URL

Listing 5-1 Example of a component action URL

http://foo.com:49663/cgi-bin/WebObjects/DateDisplay.woa/wo/

NDdW3uF2xRVjvbXUgRCVM/0.5

Table 5-1 shows a summary explanation of the phases of the request-response
process. Table 5-2 (page 57) shows the order in which the methods involved are
invoked. The process is explained in detail in “Processing the Request” (page 58)
and “Generating the Response” (page 60).

Table 5-1 Request-response processing phases

Phase Method Description

Awake public void awake() The Application, Session,
and Component objects are
awakened. (Custom
initialization logic can be
added.)

Sync public void takeValuesFromRequest
(WORequest, WOContext)

Form data is read into the
instance variables the
WebObjects elements are
bound to. (Setter methods
are used.)

http://foo.com/cgi-bin/weObjects/HelloWebObjects.woa/instance/wo/PageName.wo/sessionID/contextID.elementID

Web
server

hostname

Web
server’s
cgi-bin

directory

WebObjects
adaptor
name

WebObjects
application

Application
instance
number

Request
handle

key

Page
name

(optional)

Session ID Element IDContext ID

C H A P T E R 5

Managing User Input

Request Processing 57
  Apple Computer, Inc. May 2001

Action public WOActionResults invokeAction
(WORequest, WOContext)

The action the user triggered
(with a link or a submit
button) is performed. The
action could create a new
page.

Response public void appendToResponse
(WOResponse, WOContext)

The response page is
generated. The form
elements’ contents are set to
the values stored in the
instance variables the
WebObjects elements are
bound to. (Getter methods
are used.)

Sleep public void sleep() The Application, Session,
and Component objects are
put to sleep. (Custom
deactivation logic can be
added.)

Table 5-2 Request-response processing time line

Application Session Component

awake

awake

awake

takeValuesFromRequest

takeValuesFromRequest

takeValuesFromRequest

setter methods invoked

invokeAction

Table 5-1 Request-response processing phases

Phase Method Description

58 Request Processing
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

Processing the Request
Request processing takes place in three stages: awakening, state synchronization,
and action invocation.

� Awake. This stage is carried out when WebObjects invokes the awake method.

In a multi-user system, limited resources need to be used as efficiently as
possible. To this end, applications are only active while they are performing a
task. A single server can be running several different applications or many
instances of the same application. WebObjects keeps applications asleep while
they are not participating in the request-response loop. See “Generating the
Response” (page 60) for more information.

The application object’s awake method is invoked first, then the session’s, and
finally the component’s. You can customize this method in each of the classes
involved to provide logic you need to perform before processing the request.
Although the default implementations of those methods do nothing, you should
call the superclass’s method before executing custom logic, as Listing 5-2 shows.

invokeAction

invokeAction

appendToResponse

appendToResponse

appendToResponse

getter methods invoked
response page generated

sleep

sleep

sleep

Table 5-2 Request-response processing time line

Application Session Component

C H A P T E R 5

Managing User Input

Request Processing 59
  Apple Computer, Inc. May 2001

Listing 5-2 Overriding the awake method

public void awake() {

super.awake();

/* custom logic goes here */

}

� Sync. During this stage, the takeValuesFromRequest method is invoked, which
causes the values entered in form elements by the user to be copied into the
corresponding instance variables. If the component contains no form elements
or if the values of the form elements were not changed, this stage is not
performed.

WebObjects invokes the application’s takeValuesFromRequest method. The
application then invokes the session’s method, which in turn invokes the
component’s method. The component invokes each dynamic element’s
takeValuesFromRequest method, which causes form elements to copy the values
from the request into the appropriate component bindings. WebObjects uses the
NSKeyValueCoding interface to determine how to set the value of the binding.

To set the value of a key named key, WebObjects looks for an available setter
method or an instance variable in the following order:

1. public void setKey()

2. private _setKey()

3. _key

4. key

� Action. This is where the invokeAction method is invoked; the action the user
chose is executed.

Like the takeValuesFromRequest method, WebObjects invokes the application’s
invokeAction method. The application then invokes the session’s method, which
in turn invokes the component’s method. The component then invokes the
method on each of its dynamic elements.

When the invokeAction method of the dynamic element that triggered the
request is invoked (a submit button, for example), it in turn invokes the method
bound to its action attribute.

60 Request Processing
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

Generating the Response
After the form values are gathered and the action method is invoked, the
application creates a response page. This is the component returned by the action
method. The response-generation process has two phases: append to response and
sleep.

� Response. Here is where the response page is generated. Each WebObjects
element’s appendToResponse method is invoked, so that it can add its content to
the page to be displayed.

WebObjects invokes the application’s appendToResponse method. Then the
application invokes the session’s method, which in turn invokes the
component’s method. The component goes through its HTML code creating the
page’s content. When it finds a <WEBOBJECT> tag, it invokes the corresponding
element’s appendToResponse method, so that it can get the values of its binding
and add the resulting content to the page. The process continues recursively
until the entire response page has been created.

When a variable needs to be evaluated, WebObjects uses a system much like the
one it uses when a variable needs to be set. When the value of a key named key
is requested, WebObjects first looks for a getter method. If one is not found, it
accesses the instance variable itself. The order in which WebObjects tries to
obtain the value for key is as follows:

1. public [...] getKey()

2. public [...] key()

3. private [...] _getKey()

4. private [...] key()

5. [...] _key

6. [...] key

� Sleep. When the response process is completed, the sleep methods of the
Component, Session, and Application objects are invoked. (The order in which
the objects’ sleep method is called is the opposite of the order in which the awake
methods are invoked in the awake phase.) When overriding the sleep method,
you should follow the structure in Listing 5-3.

C H A P T E R 5

Managing User Input

Request Processing 61
  Apple Computer, Inc. May 2001

Listing 5-3 Overriding the sleep method

public void sleep() {

/* custom logic goes here */

super.sleep();

}

After all the objects involved in the request-response process are put to sleep, the
new page is sent to the WebObjects adaptor.

Backtracking Cache
WebObjects supports the use of a Web browser’s Back button (backtracking) by
keeping a cache of recently viewed pages on the server. The cache is configured to
hold 30 pages per session, but you can customize it to meet your needs. To change
the default size of the cache, add code to the Application class’s constructor. For
example, to change the page cache size to 45 pages, you add this code:

setPageCacheSize(45);

When a response page is generated, it and its state information are added to the
cache. That way, when the user clicks her browser’s Back button, WebObjects can
retrieve the correct component and its state.

For backtracking to work properly with dynamic data, a Web browser’s own cache
should be disabled, so that all page requests go to the Web server and, therefore,
your application. You can accomplish this by adding this code to the Application
class’s constructor:

setPageRefreshOnBacktrackEnabled(true);

When the cache becomes full, the oldest page in it is discarded to make room to
store a new page. When the user backtracks past the oldest page in the cache,
WebObjects informs her of the situation with a special page.

62 User Interface
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

User Interface

Input elements are bound to variables in a way very similar to the way display
elements are. In fact, input elements are essentially bidirectional display elements—
they get a value from the object when the response is generated and send a value
back to the object when a request is received. See “Request Processing” (page 54) for
more information.

For this example, you display a bit of information about the user. You’ll use text
input fields to get data from the user, and once she’s entered it, you’ll use a
WOConditional to hide the text fields and display the data. Then you’ll encapsulate
the user data into a custom object so you can generate an array of them.

First, create a new project named UserEntry. Edit the Main component with
WebObjects Builder. The first step is to add variables for the data the user enters.
Then, you add WOTextFields and bind them to the variables.

1. Add two variables named personName and favoriteFood to the Main component
using the Edit Source menu. These variables should be of type java.lang.String.
Make sure the three options below “Generate source code for” are selected so
that an instance variable and accessor methods are generated.

C H A P T E R 5

Managing User Input

User Interface 63
  Apple Computer, Inc. May 2001

2. Use the Edit Source menu to add an action method named addUser. Accept the
default of null for the component’s return value.

In a later step, you’ll customize this method to set some additional variables.

3. Add a WOForm, labels, WOTextFields, and a WOSubmitButton to capture data
from the user.

a. Add the WOForm by choosing Forms > WOForm.

All form elements, including submit buttons, must be within a WOForm to
function.

b. Add the WOForm’s elements.

Add two labels “Name: ” and “Favorite Food: ” in separate lines.

Add a WOTextField next to the Name label by choosing Forms >
WOTextField.

Add a second WOTextField next to the Favorite Food label.

Place the cursor at the end of last text field and press Shift-Enter.

Note: Avoid calling a variable name. This name is used by WebObjects and using
it for your own purposes will lead to unexpected results!

64 User Interface
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

Choose Forms > WOSubmitButton to add a button to use to submit the form.

4. Bind the variables to the value attribute of the appropriate text fields, just as with
the WOString. See Figure 5-3.

Figure 5-3 Binding the Favorite Food text field to personName

5. Bind the addUser action to the action attribute of the WOSubmitButton.

6. Save Main.wo.

C H A P T E R 5

Managing User Input

Tracing the Request-Response Loop 65
  Apple Computer, Inc. May 2001

All the user interface elements are connected. The WOTextFields set the properties
bound to them during request processing. The Java method bound to the
WOSubmitButton’s action attribute is called when the user clicks the submit
button.

Tracing the Request-Response Loop

Now you’ll modify the methods in your Java files to display a message indicating
when they’re called, so you can watch the phases of the request-response loop in
action.

Each time the user submits a request, the contents of the text fields are sent with the
request. WebObjects then determines the properties to update and the methods to
invoke using the WOD file.

Selecting the options under “Generate source code for” when you added the
favoriteFood and personName keys to the Main component caused WebObjects
Builder to insert not just two String variables, but also two methods that are used to
update those variables (the accessor methods, a getter method and a setter method).
If you add Java printing statements to those methods and to the addPerson action
method, you can watch them being called during the request part of the
request-response loop. If you add the other methods described in “Request
Processing” (page 54), you can watch them being called as you use the application,
as well.

Edit the Session.java, Application.java, and Main.java files to add the awake
method so you can track the processing of the request. You can use the Java
System.out.println method to log text to the console of your application; it is then
displayed in the Run pane of Project Builder’s main window. Add the method in
Listing 5-4 to all three files.

Listing 5-4 Tracing the request-response loop—the awake method

public void awake() {

super.awake();

System.out.println(this.getClass().getName() + "‘s awake method called");

66 Tracing the Request-Response Loop
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

}

This method prints the name of the class followed by a notification that the awake
method was called in each class that you put it in. Notice that it calls super.awake to
ensure that the superclass’s awake method is called before executing its custom logic.

Edit the setPersonName, setFavoriteFood, and addUser methods in Main.java to log
strings to the console when they are called. Your methods should look like the ones
in Listing 5-5.

Listing 5-5 Tracing the request-response loop—the accessor and action methods

public void setPersonName(String newPersonName) {

System.out.println("Setting personName to ‘" + newPersonName + “‘”);

personName = newPersonName;

}

public void setFavoriteFood(String newFavoriteFood) {

System.out.println("Setting favoriteFood to ‘" + newFavoriteFood + “‘”);

favoriteFood = newFavoriteFood;

}

public WOComponent addUser() {

System.out.println("The submit button was clicked.");

return null;

}

Build and run the new application, correcting any errors revealed during
compilation if necessary.

C H A P T E R 5

Managing User Input

Tracing the Request-Response Loop 67
  Apple Computer, Inc. May 2001

Notice that when the page first loads, the awake methods are called. This is because
the request-response loop is run through the first time the page is generated. Also
notice that your set methods are not called. This is because at the time of the first
request the user has not yet filled in any text fields, so the state synchronization
phase does not take place (See “Processing the Request” (page 58)).

Fill in the data fields and click Submit.

68 Conditional Display With WOConditional Elements
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

When you click Submit, you’ll be able to watch the request portion of the
request-response loop through Project Builder’s output window as variables are
updated.

Application:awake method called

Session:awake method called

Main:awake method called

Setting personName to ‘Joshua Marker’

Setting favoriteFood to ‘Sushi’

The submit button was clicked.

Because of the printLn method calls added, you can see that WebObjects calls each
awake method, does variable assignment, and then calls the action method you
assigned to the submit button. This means that if code in the addUser method
referred to the favoriteFood or personName variables, the values provided by the
user would be available, rather than old values, if any. You can take advantage of
this to set other variables in your component. For example, currently the form fields
remain active even after the user has filled them in. You could make the fields
disappear once the necessary data has been entered by checking in the addUser
method to see if both fields are filled in and setting a Boolean property to indicate
whether the entry is still incomplete. You could then use a WOConditional element
to hide some elements of the component.

Conditional Display With WOConditional Elements

A WOConditional element provides a means of conditionally displaying part of a
component. This part could include text, elements, and other components.

The WOConditional element has two attributes: condition and negate. The
condition attribute is required. While it is syntactically correct to use the values YES
or NO for this binding, the element is only useful when condition is bound to a Java
method that returns true or false (you can also bind it to integer objects, in which
case nonzero values are interpreted as true and zero values as false). If the method
evaluates to true, the contents of the conditional are displayed; otherwise, they are
not. If the negate attribute it set to true, this arrangement is reversed: the contents
are displayed only if the condition attribute evaluates to false.

C H A P T E R 5

Managing User Input

Conditional Display With WOConditional Elements 69
  Apple Computer, Inc. May 2001

You can use a pair of WOConditionals to ask the user for input and then display the
information she entered. This is the method you’ll use to capture and display user
data.

1. Add an instance variable you can use to indicate whether the user has entered
the necessary information.

Add the following variable to Main.java:

protected boolean entryIncomplete;

You can use WebObjects Builder’s Edit Source menu or add the variable directly
to the class file. (If you use WebObjects Builder, be sure to deselect the options
under “Create source code for” in the Add Key dialog.)

This variable should be initialized to true because the variables are empty when
the page is first displayed, so the entry is incomplete. Otherwise, the fields
would not be displayed the first time the page is shown. Initialize the variable in
the component’s constructor.

public Main(WOContext context) {

super(context);

entryIncomplete = true;

}

Also modify the addUser method to check the form properties and update the
value of entryIncomplete.

public WOComponent addUser() {

System.out.println("'addUser' button was clicked.");

if (personName.equals("") || favoriteFood.equals("") {

entryIncomplete = true;

}

else {

entryIncomplete = false; // the entry is now complete

}

return null;

}

2. Save Main.java.

3. Open Main.wo in WebObjects Builder

4. Make the form element conditional by wrapping it in a WOConditional.

70 Conditional Display With WOConditional Elements
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

The fields and the submit button should be displayed only while
entryIncomplete is true. Select the form and choose WOConditional from the
WebObjects menu. (You can select the form by clicking inside it and then
clicking the <WOForm> tag in the path pane, located below the content editor.)

5. Bind the condition attribute of the WOConditional to the entryIncomplete
instance variable.

As long as entryIncomplete evaluates to true, WebObjects displays the
WOConditional’s content.

6. Create elements to display the data once it has been entered.

a. Make a new line below the WOConditional.

b. Add two WOStrings.

c. Add the text “ prefers to eat “ between the WOStrings (note the leading
and trailing spaces).

d. Bind the first WOString’s value attribute to personName, and the second’s to
favoriteFood.

7. Select the new items and create a WOConditional around them.

8. Bind the new WOConditional’s condition to entryIncomplete. Click “+” on the
WOConditional to invert its meaning. It changes to a “-” and the contents of the
second WOConditional are displayed only when the value of the
entryIncomplete variable is false.

C H A P T E R 5

Managing User Input

Conditional Display With WOConditional Elements 71
  Apple Computer, Inc. May 2001

Figure 5-4 WOConditional elements

9. Build and run the application.

The first time the Main component is generated, you see the same page as the last
version of the application, because entryIncomplete is true and the contents of the
first WOConditional are displayed.

Once the user enters data and clicks the submit button, the addUser method
determines if she entered text in both text fields and, if you so, sets entryIncomplete
to false. Since the addUser method returns null, the page is redrawn with the new
variable settings, and this time the contents of the other WOConditional are
displayed because the variable changed.

72 Derived Properties
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

Derived Properties

Instead of using an instance variable to determine when the entry is complete, you
could provide logic in a method that evaluates the entry at the moment the method
is called and decides whether it is complete. By doing this, you can completely
remove the variable.

This kind of property is called a derived property, because while it is a property of
the object, it is not directly stored but is instead derived via logic. You can remove
the entryIncomplete variable and replace it with an entryIncomplete method
without changing the WOD file or altering Main.wo.

1. Remove the entryIncomplete variable from your Main.java file.

Remove the variable declaration as well as the assignments in the constructor
and in the addUser method. You can remove the variable itself using WebObjects
Builder by Control-clicking the variable name and choosing “Delete
entryIncomplete” . To remove the other code you must edit the Java file in
Project Builder.

C H A P T E R 5

Managing User Input

Derived Properties 73
  Apple Computer, Inc. May 2001

2. Add a method called entryIncomplete that provides the same information the
variable did.

Add the property by choosing Add Key from the Edit Source menu in
WebObjects Builder’s main window. In the Add Key dialog, deselect the option
to generate an instance variable. WebObjects automatically selects the other two
options. Deselect the option to generate a method for setting the value, leaving
only the option to generate a method for returning the value, as shown in Figure
5-5.

74 Derived Properties
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

Figure 5-5 Adding a derived property

Modify the entryIncomplete method so that it looks like the one shown in Listing
5-6.

Listing 5-6 Implementation of entryIncomplete as a derived property

public boolean entryIncomplete() {

if (personName == null || favoriteFood == null ||

personName.equals("") || favoriteFood.equals("")) {

System.out.println("The entry is incomplete.");

return true;

}

else {

System.out.println("The entry is complete.");

return false;

}

}

3. Build and run the application.

C H A P T E R 5

Managing User Input

Derived Properties 75
  Apple Computer, Inc. May 2001

Notice that the application runs just as before, and you can now see that
WebObjects requests the entryIncomplete method twice in the course of
displaying the page—once while evaluating each WOConditional.

You can use this behavior in the future to derive data when it is needed rather
than storing it in a variable.

76 Derived Properties
  Apple Computer, Inc. May 2001

C H A P T E R 5

Managing User Input

Custom Objects 77
  Apple Computer, Inc. May 2001

C H A P T E R 6

6 Component Communication

A single component does not an application make. One of the aspects of the
WebObjects strategy is the ability to define new components and share data
between them.

As was said before, WebObjects is a heavily object-oriented system. It provides for
easy encapsulation of data into components and custom classes, and facilitates the
sharing of data between components when an application is run.

In this chapter, you

� encapsulate data into a custom a class

� learn how WebObjects follows keypaths

� add a new WOComponent to your application

� programmatically create new components and return them to the user

� pass information between components

Custom Objects

Right now, you’re storing the name and food information in variables of the Main
component, abandoning the benefits of an object-oriented system.

In the case that you wanted to pass the information the user enters to other
components, you’d have pass both values. If you had more information about a
particular person, you’d have to pass each datum separately. It would be much

78 Custom Objects
  Apple Computer, Inc. May 2001

C H A P T E R 6

Component Communication

more convenient to encapsulate all the information about a user into one object and
pass that from component to component. Since WebObjects is fully object-oriented,
you can define a custom object to contain the user-entered data.

For now, you’ll just encapsulate the same data into an object. Later, though, this
kind of encapsulation is exactly what will allow you to use a database as your
persistent data storage system.

Once you’ve defined the User class with the appropriate properties, you’ll add a
variable of type User to the Main component and modify the WOTextFields on
Main.wo to use that variable’s properties instead of the personName and favoriteFood
instance variables.

Duplicating the UserEntry Project
Before proceeding with the custom class example, you should create a copy of the
UserEntry project.

1. Duplicate the UserEntry directory and name it UserEntryCustomObject.

2. Rename the UserEntry.pbproj file inside the UserEntryCustomObject directory to
UserEntryCustomObject.pbproj.

3. Open the UserEntryCustomObject project in Project Builder.

4. Rename the UserEntry target to UserEntryCustomObject.

a. Click the Targets tab.

b. Select the UserEntry target in the Targets list.

c. Choose Project > Rename.

d. Replace UserEntry with UserEntryCustomObject.

e. Click the Files tab.

5. Choose Build > Clean.

Adding the Custom Class
In this section you’ll create the custom class User.java and add it to your project.

1. Make sure the UserEntryCustomObject project is open in Project Builder.

C H A P T E R 6

Component Communication

Custom Objects 79
  Apple Computer, Inc. May 2001

2. Select the group and target for the new file.

a. Select Classes in the Groups & Files list.

b. Choose Application Server from the target menu, located on the toolbar.

3. Add the class file.

a. Choose File > New File.

80 Custom Objects
  Apple Computer, Inc. May 2001

C H A P T E R 6

Component Communication

b. Under WebObjects, select Java Class and click Next.

c. Enter User.java in the File Name text field and click Finish.

C H A P T E R 6

Component Communication

Custom Objects 81
  Apple Computer, Inc. May 2001

4. Move the variables and methods relating to the person name and favorite food
properties from Main.java to the new class.

Select the personName and favoriteFood variables, as well as their accessor
methods, from Main.java and choose Cut on the Edit menu. Then paste them
into the User.java file.

5. Save Main.java and User.java.

6. Add a variable of type User to the Main component.

a. Open the Main component in WebObjects Builder.

b. Choose Add Key from the Edit Source menu.

c. Name the variable user and choose User from the Type pop-up menu. Do not
include accessor methods.

82 Custom Objects
  Apple Computer, Inc. May 2001

C H A P T E R 6

Component Communication

7. Instantiate the user variable in the Main class.

You need to create a User object in the Main component. Make the constructor
method of the Main class look like Listing 6-1.

Listing 6-1 Instantiating the user instance variable in the constructor of the Main.java
class

public Main(WOContext context) {

super(context);

user = new User();

}

Save Main.java.

8. Change the bindings on the dynamic elements to use the new variable.

Click user in the variable browser of WebObjects Builder’s main window. Just
as with creating other bindings, drag a connection from the variable
favoriteFood to the WOTextField that is currently bound to favoriteFood. When
you release the mouse button, a pop-up menu lists the bindings available.

Notice that value has a checkmark next to it, indicating that it currently has a
binding. Selecting value replaces favoriteFood with user.favoriteFood.

Replace the personName binding in a similar fashion. Be sure to change both the
WOStrings and the WOTextFields.

9. Update the entryIncomplete method.

The entryIncomplete method in Main can no longer directly access the
personName and favoriteFood instance variables because they are protected
elements of the User class. It has to use the accessor methods that User provides.
Make the changes necessary so that the method looks like Listing 6-2.

Listing 6-2 Main.java’s entryIncomplete method using the user instance variable

public boolean entryIncomplete() {

if (user.personName() == null || user.favoriteFood() == null ||

user.personName().equals("") || user.favoriteFood().equals("")) {

 return true;

 }

C H A P T E R 6

Component Communication

Custom Objects 83
  Apple Computer, Inc. May 2001

 else {

 return false;

 }

}

10. Choose UserEntryCustomObject from the target pop-up menu.

11. Build and run the application.

The behavior is the same as the one displayed by the UserEntry project, defined
in “Managing User Input” (page 53), but the data is now being accessed via the
new custom object.

Following a Keypath
You’ll notice that the bindings for the dynamic elements are in a slightly different
format. Rather than simply naming the variable or method to call, they specify a
more specific path to the property in question: in this case, the userName variable
from the user object. This is called a keypath.

Encapsulating data into objects, as in this example, is a very important part of
object-oriented development. Access to this data is defined by a keypath that
specifies the objects, methods, or variables that can provide the data in question.

A keypath is a set of keys separated by periods. When WebObjects requires access
to data specified in a keypath, it follows the keypath by evaluating the first key from
the list.

This first key is evaluated within the scope of the instance representing the
component—the class file in the component is examined for the method or variable.
In this case, the user instance variable found in the Main.java class.

At this point, if there is another key in the keypath, it is evaluated the same way, but
this time using the result of the first keypath as the source object for the method or
variable. Now, the personName method is called. Since there are no more keys in the
keypath, the value from the personName method is returned as the value for the
binding.

In this way, you can access the data you need, as long as it can be reached by some
method from the current component. In the simplest case, you store variables in the
component itself. As your data becomes more complex, you may need to store it in
custom objects and pass them between components.

84 Defining a New Component
  Apple Computer, Inc. May 2001

C H A P T E R 6

Component Communication

Defining a New Component

In this section, you’ll create a new project and add a component for displaying and
editing a user’s information.

Remember that each component has its own Java class. It is convenient to think of
components, as well as the objects representing them, as self-contained units with
specific tasks. The task of the new component is to allow the user to edit a User
object. By encapsulating behavior this way, you ensure that if you add, remove, or
alter the properties of a user, you need to modify only this component to allow
editing the new attributes.

You begin by creating a new project since you no longer need the code for tracking
the request-response cycle. Then you add the custom User class and create a
component for editing a User object. Then you will alter the Main component to
maintain a list of users rather than a single user, and add methods to use the new
component to edit any one of them.

1. Create a new WebObjects application project and name it
ComponentCommunication.

C H A P T E R 6

Component Communication

Defining a New Component 85
  Apple Computer, Inc. May 2001

2. Add a User.java class.

Follow the steps in “Adding the Custom Class” (page 78) to add the file to the
project. Then edit the file so that it looks like Listing 6-3.

Listing 6-3 User.java

import com.webobjects.foundation.*;

import com.webobjects.appserver.*;

import com.webobjects.eocontrol.*;

public class User extends Object {

 protected String personName;

 protected String favoriteFood;

 public String personName() {

 return personName;

 }

 public void setPersonName(String newPersonName) {

 personName = newPersonName;

86 Defining a New Component
  Apple Computer, Inc. May 2001

C H A P T E R 6

Component Communication

 }

 public String favoriteFood() {

 return favoriteFood;

 }

 public void setFavoriteFood(String newFavoriteFood) {

 favoriteFood = newFavoriteFood;

 }

public boolean entryIncomplete() {

if (personName == null || favoriteFood == null ||

personName.equals("") || favoriteFood.equals("")) {

 return true;

 }

 else {

 return false;

 }

}

}

3. Add a component to the project.

a. Select Web Components from the Groups & Files list.

b. Choose File > New File.

c. Under WebObjects, select Component in the New File pane of the assistant
and click Next.

d. Enter UserEdit in the File Name text field.

C H A P T E R 6

Component Communication

Defining a New Component 87
  Apple Computer, Inc. May 2001

e. Make sure Application Server is selected in the Targets list and click Finish.

You’ll notice that the new component is added to the project’s Web Components
group.

88 Defining a New Component
  Apple Computer, Inc. May 2001

C H A P T E R 6

Component Communication

You’re now ready to customize the component used for editing a User object,
UserEdit. The user edits one User object at a time, so UserEdit.java needs to have
one instance variable of type User. The UserEdit component will have fields similar
to those defined in the Main component of the UserEntry project (see “User
Interface” (page 62)) and buttons to submit and cancel the changes.

1. Open UserEdit.wo in WebObjects Builder.

2. Add a User instance variable named user to the component.

Select the options that create an instance variable and provide accessor methods.
This variable holds the particular User object being edited.

C H A P T E R 6

Component Communication

Defining a New Component 89
  Apple Computer, Inc. May 2001

3. Add a WOForm element to the UserEdit component.

4. Add and bind the WOTextFields as shown in Figure 6-1 (page 90).

5. Add an action method called submitChanges to the component. Choose Main as
the page returned by the method. This means that when the user is done editing,
she’s returned to the Main component rather than the UserEdit component.

6. Use the Forms menu to add a WOResetButton and a WOSubmitButton, and
bind the submitChanges method to the WOSubmitButton’s action attribute.

The WOResetButton resets the form fields.

7. Save UserEdit.wo.

90 Defining a New Component
  Apple Computer, Inc. May 2001

C H A P T E R 6

Component Communication

8. Edit the submitChanges method in UserEdit.java so that it looks like Listing 6-4.

Listing 6-4 EditUser.java’s submitChanges method

public Main submitChanges() {

Main nextPage = (Main)pageWithName("Main");

// Initialize your component here

nextPage.setUser(user); // send user object to the Main page

return nextPage;

}

9. Save UserEdit.java.

Figure 6-1 UserEdit.wo

C H A P T E R 6

Component Communication

Modifying the Main component 91
  Apple Computer, Inc. May 2001

Modifying the Main component

In this section you’ll add elements to the Main component so that it displays the
user information after it has been edited. The component needs a WOConditional
element so that user information is displayed only if the user entered data in the
UserEdit page. After the modifications are made, Main.wo should look similar to
Figure 6-2 (page 93).

1. Add a method called noDataEntered to Main.java, as shown in Listing 6-5.

Listing 6-5 The noDataEntered method of the Main.java class

public boolean noDataEntered() {

if (user == null || user.entryIncomplete()) {

return true;

}

else {

return false;

}

}

2. Open Main.wo in WebObjects Builder.

3. Add a user instance variable of type User, including accessor methods.

4. Add informational text displayed when no data has been entered.

a. Add a WOConditional element.

b. Enter the following text inside the WOConditional: User data has not been
entered.

c. Bind the WOConditional’s condition attribute to noDataEntered.

5. Add display fields and a caption displayed when data has been entered.

a. Add another WOConditional element below the first one.

b. Inside the second WOConditional, add a WOString, enter the text “ likes to
eat “ after it, and add another WOString.

92 Modifying the Main component
  Apple Computer, Inc. May 2001

C H A P T E R 6

Component Communication

c. Bind the first WOString’s value attribute to user.personName and the second’s
to user.favoriteFood.

d. Bind the WOConditional’s condition attribute to noDataEntered.

Click “+” in the WOConditional so that it changes to “-”. This makes it so that
only one of the WOConditional elements’s content is displayed at a time. See
“Conditional Display With WOConditional Elements” (page 68) for more
information.

6. Add an action called editUser, which returns a UserEdit component.

7. Add a link that displays the UserEdit page.

a. Add a WOHyperlink below the second WOConditional, and enter Edit as its
caption.

b. Bind the WOHyperlink’s action attribute to the editUser action.

8. Save Main.wo.

9. Edit the editUser method in Main.java so that it looks like Listing 6-6.

Listing 6-6 Main component’s editUser action method

public UserEdit editUser() {

UserEdit nextPage = (UserEdit)pageWithName("UserEdit");

// Initialize your component here

if (user == null) {

user = new User();

}

nextPage.setUser(user); // send the user object to the UserEdit page

return nextPage;

}

C H A P T E R 6

Component Communication

Running the Application 93
  Apple Computer, Inc. May 2001

10. Save Main.java.

Figure 6-2 Main.wo

Running the Application

Make sure the ComponentCommunication target is selected. Build and run the
application. When the Main page is first displayed, there is no user data to show
(the user instance variable is null), therefore the message “User information has not
been entered” appears instead. When the user clicks Edit, the Main component

94 Running the Application
  Apple Computer, Inc. May 2001

C H A P T E R 6

Component Communication

invokes its userEdit action, which returns a UserEdit page. If the user enters data
into the Name and Favorite Food text fields in the UserEdit page and clicks submit,
UserEdit’s submitChanges action, which returns a new Main page, is invoked.

There is only one instance of User during the application’s execution. The User
object is instantiated in Main’s editUser method if it does not already exist (see
Listing 6-6 (page 92). Main then sends this object to the newly created UserEdit
page. Similarly, UserEdit sends the User object to a new Main instance in its
submitChanges method.

95
  Apple Computer, Inc. May 2001

C H A P T E R 7

7 Using the Session to Manage State

The Web is by its nature a stateless medium. A Web server receives a request, reads
the document, and returns it to the requesting browser, without any knowledge of
previous requests from the same user.

A Web application, however, needs to maintain state between one request from a
particular user and the next. WebObjects encodes a unique identifier with each
incoming request. This identifier is used to maintain state over a stateless medium.
See “Request Processing” (page 54) for more information.

Part of this state is the session. While you can pass information back and forth
between components, you frequently need to maintain state that is shared between
components. Rather than pass this information from component to component (as
described in “Component Communication” (page 77)), you can store it at a higher
level—in the Session object. Each component has access to the Session object, so
such data stored in it is globally available.

In this chapter, you

� store persistent information in the Session object

� access the session from multiple components

� see the benefit of making your components reusable

96 The Session
  Apple Computer, Inc. May 2001

C H A P T E R 7

Using the Session to Manage State

The Session

A session is a period of time in which one user interacts with your application. Since
each application can have multiple users simultaneously, it may have multiple
Session objects. Each session has its own data and its own cached copies of the
components that the user has requested, as shown in Figure 7-1.

Figure 7-1 Relationship between application and session

The session is represented as an instance of the Session class (Session.java).
Initially, the session has only WebObjects-provided behavior, but you can add your
own methods and variables. For example, if you were building an online shopping

F00000RN400aE1003

zA1000G5800zx7001

F00000RN400aE1002

Dr7000Na800r06001

http://ursa/cgi-bin/WebObjects/Movies.woa/wo/zA1000G5800zx7001/0.3

WebObjects
application
"Authors"

HTTP server
"ursa"

Session
store

Session

Session

Session

Session

C H A P T E R 7

Using the Session to Manage State

Displaying and Editing Lists of Objects 97
  Apple Computer, Inc. May 2001

application, the session would be an appropriate place to store a user’s shopping
cart, because the session is tied to one particular user and persists as long as the user
is using the application.

When an incoming request is processed, WebObjects automatically activates the
Session instance associated with the user who originated the request, as described
in “Request Processing” (page 54).

The WOComponent class includes a method for accessing the currently active
session. Since all your components inherit from this class and WebObjects
automatically activates the correct session when a request is processed, calling the
session method from your component (or in a keypath) provides you with the
session for the current user.

Displaying and Editing Lists of Objects

Before you begin, you should make a copy of the ComponentCommunication
project and name it SessionState. See “Duplicating the UserEntry Project” (page 78).

You’ll now edit the Main component to show a list of users instead of just one. For
that, you’ll need to use the NSArray and NSMutableArray classes.

The NSArray and NSMutableArray Classes
The NSArray represents an ordered collection of objects, much like a Java array
(java.lang.Array). NSArray objects are not changeable after being instantiated.
(The array itself is not changeable, but the items it contains can be changed if their
types are mutable.) The NSMutableArray class (a subclass of NSArray) is intended
for arrays that need to grow and shrink dynamically.

The following sections list the NSArray and NSMutableArray methods that you
may find useful when manipulating arrays.

98 Displaying and Editing Lists of Objects
  Apple Computer, Inc. May 2001

C H A P T E R 7

Using the Session to Manage State

NSArray

objectAtIndex(int index)

Returns the object at the given integer index. The first object in an
NSArray is at index zero. Objects are returned as generic Java Objects.
Your Java code may need to cast objects to a specific class to use them.

count

Returns an integer indicating the number of objects in the NSArray.

NSMutableArray

addObject(Object anObject)

Adds the given object to the end of the array, increasing its size by one.
removeObjectAtIndex(int index)

Removes the indicated object from the array, causing it to shrink in size.
In addition to these methods, the NSArray and NSMutableArray classes have other
methods you may find useful. You can examine them using Java Browser.

Adding the NSMutableArray to the Session
You can use WebObjects Builder to add an array to the Session class.

1. Open Main.wo in WebObjects Builder.

2. Add the userList instance variable to session.

a. Select session in the Main list.

b. Control-click in the Session list.

C H A P T E R 7

Using the Session to Manage State

Displaying and Editing Lists of Objects 99
  Apple Computer, Inc. May 2001

c. Choose Add Key to Session from the pop-up menu.

d. Name the variable userList.

e. Select the “Mutable array of” option and then User from the pup-up menu.

f. Under “Generate source code for,” make sure only “An instance variable” is
selected and click Add.

100 Displaying and Editing Lists of Objects
  Apple Computer, Inc. May 2001

C H A P T E R 7

Using the Session to Manage State

3. Initialize the new array in Session.java.

The NSMutableArray needs to be instantiated when the Session object is
created. It will initially be empty, but you will provide methods to add objects
to it.

Edit the constructor of the Session.java class and add the addToUserList and
removeFromUserList methods. When you’re done the file should look like Listing
7-1.

Listing 7-1 Session.java

import com.webobjects.foundation.*;

import com.webobjects.appserver.*;

import com.webobjects.eocontrol.*;

public class Session extends WOSession {

 /** @TypeInfo User */

 protected NSMutableArray userList;

 public Session() {

C H A P T E R 7

Using the Session to Manage State

Displaying and Editing Lists of Objects 101
  Apple Computer, Inc. May 2001

 super();

 /* ** Put your per-session initialization code here ** */

 userList = new NSMutableArray();

 }

 public void addToUserList(User newUser) {

 userList.addObject(newUser);

 }

 public void removeFromUserList(User aUser) {

 userList.removeObject(aUser);

 }

}

Adding the WORepetition to Main
A WORepetition element is an element designed to iterate over each item in an
NSArray, repeating a set of HTML code (possibly including WebObjects elements)
once for each item.

A WORepetition has bindings for a list to iterate over (the list attribute) and for a
variable to use to hold each item temporarily as it iterates over the list (the item
attribute). As the contents of a WORepetition are displayed, the current item in the
list is stored in the placeholder. WebObjects elements within the WORepetition can
refer to this placeholder variable, and the value of each item is substituted in turn.

You’ll wrap the dynamic elements in Main.wo in a WORepetition. You can use the
user instance variable as the WORepetition’s placeholder. After performing the
following steps, Main.wo should look similar to Figure 7-2 (page 103).

1. In Main.wo, delete the first WOConditional element (the one that contains the text
“User information has not been entered.”

2. Cut the internal contents of the remaining WOConditional.

3. Select the WOConditional and delete it.

4. Paste the content after the Edit WOHyperlink.

5. Add a deleteUser method that returns null.

6. Add a WOHyperlink to delete users.

a. Add a WOHyperlink element after the second WOString.

102 Displaying and Editing Lists of Objects
  Apple Computer, Inc. May 2001

C H A P T E R 7

Using the Session to Manage State

b. Enter Delete as the WOHyperlink’s caption.

c. Add a carriage return after the WOHyperlink by pressing Shift-Enter.

d. Bind the WOHyperlink’s action attribute to the deleteUser method.

7. Wrap the dynamic elements in Main.wo with a WORepetition.

a. Select all the elements in the page.

b. Choose WebObjects > WORepetition.

The elements are enclosed in a WORepetition element.

8. Bind the WORepetition’s list attribute to session.userList.

Drag from session.userList to the first square of the WORepetition.

9. Bind the WORepetition’s item attribute to user.

Drag from user to the second square of the WORepetition.

10. Add an addUser action that returns a UserEdit page.

11. Add a WOHyperlink to add new users.

a. Add a WOHyperlink below the WORepetition.

b. Enter Add User as the WOHyperlink’s caption.

c. Bind the WOHyperlink’s action attribute to the addUser method.

C H A P T E R 7

Using the Session to Manage State

Displaying and Editing Lists of Objects 103
  Apple Computer, Inc. May 2001

Figure 7-2 Main.wo with a WORepetition

Editing the Users
You can use the UserEdit component to edit an arbitrary user. To do so, you’ll use
the editUser method in Main.java. The method has additional logic that is not
needed in this application. Edit the editUser method so that it looks like Listing 7-2.

Listing 7-2 The editUser method of the Main.java class

public UserEdit editUser() {

UserEdit nextPage = (UserEdit)pageWithName("UserEdit");

// Initialize your component here

nextPage.setUser(user);

return nextPage;

}

104 Displaying and Editing Lists of Objects
  Apple Computer, Inc. May 2001

C H A P T E R 7

Using the Session to Manage State

The editUser method creates an instance of UserEdit and calls its setUser method
with user as the argument. The user variable contains the appropriate object
because, when the user clicks Edit, WebObjects stores the session.userList item
corresponding to the row on which the Edit link is located in the user instance
variable. Remember that the WORepetition’s item attribute is bound to user.

The UserEdit component requires a minor change. The submitChanges method in
UserEdit.java no longer needs to invoke the setUser method of the Main.java class
(user information is stored at the session level, which Main can access through the
session object). Edit the submitChanges method so that it looks like Listing 7-3.

Listing 7-3 The submitChanges method of the UserEdit.java class

public Main submitChanges() {

Main nextPage = (Main)pageWithName("Main");

// Initialize your component here

return nextPage;

}

Adding Users
This is where it all ties together. Right now, you have a means of editing a specific
user (the UserEdit component); a list of users, which starts out empty
(session.userList); and a WORepetition that displays your list (in the Main
component). All you need to add is a way to build the list!

You need to edit the addUser method in Main.java so that it creates a new User
object, adds it to the session’s list of users, and also passes it to the UserEdit page
before it is sent to the Web browser to be edited. Edit addUser so that it matches
Listing 7-4. Notice in particular the code that retrieves the Session object. The
addToUserList method of that object is then invoked with the newly created User
object as the argument.

Listing 7-4 The addUser method of the Main.java class

public UserEdit addUser() {

UserEdit nextPage = (UserEdit)pageWithName("UserEdit");

C H A P T E R 7

Using the Session to Manage State

Running the Application 105
  Apple Computer, Inc. May 2001

// Initialize your component here

Session session = (Session)session(); // get session for current user

User newUser = new User(); // create a new user object

session.addToUserList(newUser); // add new user to session's userList

nextPage.setUser(newUser); // send the new user to UserEdit

return nextPage;

}

Deleting Users
The last step is to edit the deleteUser method in Main.java so that it removes a user
from the list. The method is very similar to the addUser method described in
“Displaying and Editing Lists of Objects” (page 97). The only difference is that,
instead of creating a new user object and invoking the Session.addToUserList
method, it only invokes the Session.removeFromUserList method with the User
object in the user instance variable (updated by WebObjects when the user clicks
Delete).

Edit the deleteUser method in Main.java so that it looks like Listing 7-5.

Listing 7-5 The deleteUser method of the Main.java class

public WOComponent deleteUser() {

Session session = (Session)session();// get session for current user

session.removeFromUserList(user);// remove user from session's userList

return null;

}

Running the Application

Build and run the application. Verify that new users you create are added to the list
and that you can edit and delete existing users.

106 Benefits of Encapsulation
  Apple Computer, Inc. May 2001

C H A P T E R 7

Using the Session to Manage State

Figure 7-3 The application in action

Benefits of Encapsulation

The application runs just as before. The benefits of moving the list of users to the
session are all organizational. If you were to add other components that interacted
with the list of users to the application, they could all share the list present in the
session without any additional code.

Notice also that your UserEdit page required only a minimal change, since you
wrote it to work on any given User object without tightly bound relationships to
other parts of the application. This is a traditional benefit of object-oriented
programming allowed by the fact that every WebObjects component is an object.

Further Exploration

This chapter has introduced several new concepts. These can be combined with the
techniques you’ve already learned to add many features. Here are some ideas to get
you started.

C H A P T E R 7

Using the Session to Manage State

Further Exploration 107
  Apple Computer, Inc. May 2001

� Improve the Edit User link. Give the user the ability to edit the users in the array
by clicking their names rather than Edit. You can do this by replacing the static
text within the WOHyperlink with the WOString that displays the user’s name.

� Indicate whether the entry is complete. Add a textual indication of whether the
user entry is complete using a WOConditional and the entryIncomplete
property of the user variable.

� Show the number of items in the list. Use a WOString and the count method of
userList to display the number of entries in the list.

108 Further Exploration
  Apple Computer, Inc. May 2001

C H A P T E R 7

Using the Session to Manage State

Database Structure 109
  Apple Computer, Inc. May 2001

C H A P T E R 8

8 Database Basics

WebObjects uses a technology called Enterprise Objects to access data from
databases. While Enterprise Objects lets you treat your data as instances of Java
classes rather than requiring you to concern yourself with the database level, it is
useful to have some knowledge of basic database structure.

This chapter is only a basic introduction to the structure and use of a database. It is
sufficient for you to begin using Enterprise Objects, but for further detail you
should consult the documentation for your database or your local database
administrator.

In this chapter, you learn

� how a modern database is structured

� how relationships are implemented in a database

Database Structure

A modern database closely follows the object-oriented paradigm. The basic unit of
organization is the table, which defines the attributes of a data entity. A table can
have zero or more rows.

Tables
The table is the equivalent of a class definition. It defines the attributes or properties
that each row in it has. Each property is called a column.

110 Database Structure
  Apple Computer, Inc. May 2001

C H A P T E R 8

Database Basics

Much like in Java, in most databases there are certain primitive types—like string,
int, or double in Java—and each column on a table is defined to be of a given one of
these types. Enterprise Objects handles the conversion from database internal types
to Java types. Further, for each column, you can declare whether a given row is
required to provide a value or whether it is allowed to be null.

You can think of a table as a class, columns as instance variables, and rows as
individual object instances. Like a class definition file in Java, a table itself does not
have variables. You must add a row to it to use any of its properties.

Rows
A row is the equivalent of an instance of a Java class. Where the table is like a class,
a row is like an instance of a class.

Uniquing

Each row in a given table has to be different in some way from the others. This is so
the database system knows which row to update or delete when you make changes
to your data.

The database uses a primary key that defines a property (or set of properties) whose
value uniquely identifies each row. For each table you define, you provide a key (or
list of keys), which define how the database system can be sure two given rows are
different. For example, if you are defining a table to contain data about people, you
might decide to use a person’s last name to differentiate each row from the others.

The database system ensures that each row has a unique value in the column (or
combination of values in the set of columns) you specify as the primary key.
Enterprise Objects hides many of the complexities of database interaction, including
the conversion from database internal types to Java types. However, if you try to
override it and set a value in a row that conflicts with a value in another row, the
database refuses to make the change and reports an error that your application
should handle.

It’s important to choose the primary keys for your tables carefully. If you define
your unique key as the column containing a person’s last name, you could run into
difficulty as soon as you try to add two people with the same last name to your
table. In general, it’s best to make your primary key one you don’t plan on using for
anything else and let Enterprise Objects handle it for you.

C H A P T E R 8

Database Basics

Relationship 111
  Apple Computer, Inc. May 2001

In the example Authors database (see “Creating the Authors Database” (page 124)),
each table has a column that servers as its primary key called ENTITYNAME_ID of
type integer.

Not Null

You may wish to declare that without certain data, a row isn’t valid. By declaring a
given column not-null, you tell the database system to reject any new rows that
don’t provide the required data.

If you’re gathering information for an email mailing list, for example, a row without
a value for the EMAIL_ADDRESS column isn’t useful.

A table’s primary key column must always be declared not-null.

Relationship

Part of a database’s scheme is each table’s relationships with other tables. Each
relationship has source and destination keys that define it.

Rows and tables can relate in many ways. Just as with object-oriented
programming, the way you design your database tables is depends on how you
intend to use them. Relationships can model ownership, where one row is a
subordinate part of another row, but placed in a separate table for organization—
for example, each row in a PERSON table can own a row in an ADDRESS table
because every person must have a mailing address. Relationships can be optional
or required. In the Authors database, every book must have an author, but it is
conceivable that some authors are as yet unpublished (and hence would have no
rows in the BOOK table).

Since a relationship leads from a source table to a destination table, we speak of
following a relationship. While Enterprise Objects removes most database
considerations from using your object’s relationships, it’s useful to understand how
a relationship is maintained at the database level.

112 Relationship
  Apple Computer, Inc. May 2001

C H A P T E R 8

Database Basics

Relationships are followed not from table to table but from a specific row into
another row. It doesn’t make any sense to ask what the author of the BOOK table is,
but each row of the BOOK table has a corresponding row in the AUTHOR table.

To link table rows, foreign keys are used. Foreign keys are columns in the source
table whose rows point to the primary key column in the target table. For example,
the BOOK table has a foreign key column (AUTHOR_ID) that is used to find the
corresponding row in the AUTHOR table (the author of the book). AUTHOR_ID in
the BOOK table does not provide any information on a book. Its only purpose is to
link the rows of the BOOK table with rows on the AUTHOR table.

One important attribute of a relationship is called ordinality. Ordinality is a
measure of whether a relationship necessarily relates a row to only one other row,
or to multiple rows in the destination table. This breaks relationships into two types:
to-one or to-many.

To-One Relationships
A to-one relationship, as the name suggests, is one where the source row is
connected to only one other row by the relationship. Each row in the BOOK table
has only one author in the AUTHOR table.

The destination column (or columns) of a to-one relationship must be the same as
the primary key columns of the destination table. This guarantees that there is only
one destination row for any given source row.

To find the row corresponding to a specific book’s author, you would perform the
following steps:

1. Get the source and destination columns.

According to the definition of the relationship, the source column is
AUTHOR_ID in the BOOK table, and the destination column is AUTHOR_ID in
the AUTHOR table.

2. Get the value in the source row’s AUTHOR_ID column.

3. Find the target row in the AUTHOR table (the row whose AUTHOR_ID column
is equal to the value of the AUTHOR_ID column in the source row).

Since AUTHOR_ID is the primary key for the AUTHOR table, there is only one
matching row. This row contains data about the book’s author.

C H A P T E R 8

Database Basics

Relationship 113
  Apple Computer, Inc. May 2001

To-Many Relationships
Alternatively, a relationship can have the ability to connect the source row with
multiple destination rows. For example, in the Authors database, each author can
have multiple books. Remember that the AUTHOR_ID column in the BOOK table
is a foreign key, not a primary key. Therefore, that column doesn’t have to have
unique values throughout the rows of the BOOK table.

To find the BOOK rows corresponding to an AUTHOR row, you would perform the
following steps:

1. Get the source and destination columns.

According to the definition of the relationship, the source column is
AUTHOR_ID in the AUTHOR table, and the destination attribute is
AUTHOR_ID in the BOOK table.

2. Get the value in the row’s AUTHOR_ID column for the source row.

3. Find the rows in the BOOK table whose AUTHOR_ID column’s value is equal
to the value from the AUTHOR_ID column in the source row.

Notice that AUTHOR_ID is not the primary key for the BOOK table. This means
that the relationship could lead to more than one row in the BOOK table. Each
of these would have the same value in their AUTHOR_ID column, meaning that
the books that they represent have all been written by the same author.

Further, there’s no guarantee that there would be any rows in the BOOK table
whose AUTHOR_ID column’s value match the value of the AUTHOR_ID
column in the source row at all. So the relationship could lead to no rows in the
BOOK table.

114 Relationship
  Apple Computer, Inc. May 2001

C H A P T E R 8

Database Basics

System Architecture 115
  Apple Computer, Inc. May 2001

C H A P T E R 9

9 Introduction to Enterprise Objects

Enterprise Objects is a powerful system that makes using a database as a persistent
storage for your data almost transparent to you as a developer. It removes the need
for you to work with SQL or other database querying languages by providing an
automatic layer that translates database schemata into Java code.

This abstraction allows you to concentrate on the behavior of your enterprise
objects (the Java classes that are generated from your data model) rather than
spending your time implementing dozens of procedures to handle your data on the
database end, and it allows you to benefit from the advantages that object
orientation provides.

This chapter introduces the theory behind the Enterprise Object technology.
“Working With Editing Contexts” (page 123), puts the theory to use.

This chapter explains

� the layers that make up an Enterprise Objects application

� the role the model plays in an Enterprise Objects application

System Architecture

Enterprise Objects is a suite of tools and code that allow you to create
database-based applications. It is divided into several layers concerned with
connecting to the database, converting result sets to enterprise objects, and ensuring
that the state of the enterprise objects and the database are always synchronized.
WebObjects adds another layer on top of Enterprise Objects; it is used to manipulate
enterprise objects and display their data.

116 System Architecture
  Apple Computer, Inc. May 2001

C H A P T E R 9

Introduction to Enterprise Objects

The following components, listed from the WebObjects layer down to the database,
make up the Enterprise Objects architecture.

� WebObjects components display and manipulate enterprise objects.

� Enterprise objects are the instances of Java classes you’ve created to represent
your database rows.

� An editing context manages a graph of objects and keeps track of changes that
need to be transmitted to the database.

� The model (maintained with EOModeler) provides a high-level view of your
data model. It defines the mapping between the data entities your application
requires and the tables in your database. It also defines relationships between
entities, which are reflected in the database tables with primary and foreign key
definitions.

� The database level translates from the dictionaries used by the adaptor level to
enterprise objects, and vice versa.

� The adaptor level understands the preferred protocol of the database, and uses
it to translate between simple objects called dictionaries and the raw data on the
database.

� The database is external to Enterprise Objects and provided by a third party.

Figure 9-1 illustrates the approach that Enterprise Objects takes when interacting
with a database.

C H A P T E R 9

Introduction to Enterprise Objects

System Architecture 117
  Apple Computer, Inc. May 2001

Figure 9-1 The Enterprise Objects approach

EOAccess

EOControl

Your Code

EOAccess

EOControl

Your Code

EOAccess

EOAdaptor

Database

118 System Architecture
  Apple Computer, Inc. May 2001

C H A P T E R 9

Introduction to Enterprise Objects

You’re familiar with manipulating Java objects using WebObjects components.
Now, we’ll start at the top with those objects and follow the interactions in the
Enterprise Objects layer down to the database.

WebObjects Interaction
WebObjects provides the user interface for your enterprise objects. The WebObjects
dynamic elements use an interface called EOKeyValueCoding to communicate with
Java objects. All enterprise objects implement this interface.

Enterprise Objects
An enterprise object is first and foremost a Java object like any other. It has instance
variables and methods that act on them. However, it has the additional
characteristic of being linked to a database structure by Enterprise Objects.
Enterprise objects differ from other objects in that they are a representation of data
that is stored in a database.

Each enterprise object typically represents one row from a database. When the
properties (instance variables) of an enterprise object are changed and you instruct
Enterprise Objects to save those changes, they are propagated through the layers
down to the database.

An enterprise object can be an instance of the default EOGenericRecord class or of
a custom Java class. EOGenericRecord provides all the default behavior of
propagating changes to the database but does not allow the addition of custom
logic. You use an EOGenericRecord when you don’t need special behavior beyond
that of basic representation of database values. You define a custom class when you
wish to have more control over the properties and behavior of your data. Custom
classes are defined as subclasses of EOGenericRecord so they inherit the default
enterprise object behavior.

Enterprise objects, whether represented by EOGenericRecord or a custom class, are
defined in a model created with the EOModeler application. The model, which is
explained in greater detail in “The Model” (page 121), specifies which columns in
your database are associated with a particular property for each entity of your
data model.

C H A P T E R 9

Introduction to Enterprise Objects

System Architecture 119
  Apple Computer, Inc. May 2001

EOGenericRecords use the key-value coding mechanism defined in the
EOKeyValueCoding interface to store their data. Each key is named for the database
column it represents. When an enterprise object is instantiated from a row in the
database, the value of its keys are obtained from their corresponding columns in
the row.

EOControl
The control layer is the principal domain of enterprise objects. It provides an
insulated layer dedicated to maintaining the state of enterprise objects. Data flows
out and upward to WebObjects components, and can be propagated downward
toward the database. The EOControl layer is responsible for

� tracking changes to enterprise objects

� updating the database when changes are saved

� managing undo operations in the object graph

� managing uniquing in the object graph

Uniquing is used by Enterprise Objects to ensure that an enterprise object is not
duplicated in the control layer. This mechanism uses an entity’s primary key to
determine the identity and uniqueness of each enterprise object in the object
graph. It is important that enterprise objects not be duplicated in the object
graph to maintain data integrity and use memory efficiently. For example, if two
books have the same author, the control layer ensures that they both refer to the
same Author object in memory. Uniquing is one of the responsibilities of the
object graph.

The Object Graph

An object graph is a collection of all the currently active enterprise objects for a
particular external store. You can think of it as a snapshot of the current state of the
database reflected in Java objects.

An object graph can also represent a potential state of the database. If your
components make changes to some enterprise objects, those changes are stored in
an object graph until they are committed to the database. Keeping track of these
changes is the responsibility of the EOEditingContext class.

120 System Architecture
  Apple Computer, Inc. May 2001

C H A P T E R 9

Introduction to Enterprise Objects

The Editing Context

Each editing context object manages one object graph, keeping track of any changed
properties of each of its enterprise objects. It also preserves their original values so
changes can be undone.

Typically, a set of changes reflecting user input and selection is accumulated in the
object graph of an editing context. At some point, the changes are either committed
to the database for permanent storage, or they are undone, reverting the object
graph to its original state. If the changes are committed, the editing context notifies
the EOAccess layer of the changes made to enterprise objects, so that it can make the
necessary changes to the database.

You can create editing contexts in your application. However, by default, each
session has an editing context associated with it. This default editing context,
accessible by all components, is usually sufficient.

EOAccess
The access layer provides access to the database through a standardized protocol.
Every piece of data crossing between the access layer is in the form of an enterprise
object. This level of abstraction makes the job of the control layer much simpler,
since it can rely on the format of the data.

The access layer is divided into two parts: the adaptor level and the database level.

The Adaptor Level

The adaptor level is where Enterprise Objects translates data from a database and
packages it as key-value dictionaries. Currently, the JDBC (Java Database
Connectivity) standard is used for database access, but the adaptor level makes it
possible to allow access to other database systems, such as legacy databases, simply
by adding an adaptor. This allows a developer to remain unconcerned with the
specific database to be used while writing code.

C H A P T E R 9

Introduction to Enterprise Objects

The Model 121
  Apple Computer, Inc. May 2001

The Database Level

The database level is the level beyond which no details are known about the specific
database underneath. Enterprise objects are created from raw data from the
database, and when data is needed by the control layer, the database layer performs
the needed fetches from the database. Similarly, the database layer handles the
actual updates to the database when an editing context is saved.

The Model

The model is a representation of the entire database, from table structure to delete
rules. It specifies to Enterprise Objects how to translate data between the enterprise
objects and database rows. You use EOModeler to create models.

The model also specifies the information needed to connect to the database,
including network and password information.

122 The Model
  Apple Computer, Inc. May 2001

C H A P T E R 9

Introduction to Enterprise Objects

The Authors Application 123
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

10 Working With Editing Contexts

Now that you have read the theory behind Enterprise Objects, you can put some of
it into practice. You’ll use a project similar to the one you developed before and add
database access to it. As you work, refer to the previous chapters as necessary to be
sure you understand what is going on.

In this chapter, you

� create a database using OpenBase Manager

� define an entity in EOModeler

� create a database table using EOModeler

� perform fetch, insert, update, and delete operations on an object store

� save editing context changes to an object store

The Authors Application

In this section you’ll create an application to edit the AUTHOR table of the Books
database. The table stores the first and last names of book authors. Your application
provides facilities for adding, editing, and deleting authors.

The AUTHORS table contains three columns: FIRST_NAME, LAST_NAME, and,
AUTHOR_ID. The AUTHOR_ID column serves as the table’s primary key, and it’s
not shown in the application’s user interface. You don’t even need to worry about
updating the value of that column; Enterprise Objects does it for you.

124 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

Creating the Authors Database
The first step is to create the Authors database. You’ll user OpenBase Manager to
create it.

1. Launch OpenBase Manager.

The OpenBase Manager application is located in the /Applications/OpenBase
directory.

2. Create a new database.

a. Choose Database > New.

b. Enter Authors in the Database Name text field.

c. Select the Start Database at Boot option.

d. Choose ASCII from the Internal Encoding pop-up menu.

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 125
  Apple Computer, Inc. May 2001

e. Click Set.

3. Start the database.

a. Select the localhost/Authors database in the list.

b. Click Start.

4. Quit OpenBase Manager.

You now have an empty database called Authors.

Creating the Authors Model
EOModeler is the tool you use to model your data. In it you define the entities that
serve as the interface between your code and the database. In this section, you’ll use
EOModeler to add a table to the Authors database.

1. Launch EOModeler.

The EOModeler application is located in the /Developer/Applications directory.

2. Choose Model > New.

3. Select the adaptor to use.

126 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

With the JDBC adaptor provided with your WebObjects installation, you can
communicate with any database that includes a JDBC driver.

Select JDBC from the list and click Next.

4. Provide JDBC connection information.

Your model includes the information necessary to connect to your database. The
JDBC Connection dialog is where you enter that information. For this exercise,
you only need to specify the URL used to connect to the database.

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 127
  Apple Computer, Inc. May 2001

Enter jdbc:openbase://localhost/Authors in the URL text field and click OK.

5. Select what to include in your model.

This pane is where you tell EOModeler how to configure the model entities from
an existing database. Because you are creating a new database, none of these
options needs to be selected.

128 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

Deselect all the options and click Finish.

Adding the Author Entity to the Model

In this section you’ll add an entity called Author to the new model. This entity maps
to the AUTHOR table that EOModeler generates from the entity’s properties.

1. Add the entity.

Choose Property > Add Entity.

2. Configure the entity.

Choose Tools > Inspector.

The Entity Inspector appears. It allows you to enter a variety of information
pertaining to the new entity.

a. Name the entity Author.

b. Enter AUTHOR in the Table Name text field.

c. Enter Author in the Class text field.

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 129
  Apple Computer, Inc. May 2001

3. Add and configure Author’s attributes.

The Author entity has two significant attributes: firstName and lastName. An
additional attribute, authorId, serves as the entity’s primary key.

a. Make sure the Author entity is selected in the entity list.

b. Choose Property > Add Attribute.

c. Name the attribute firstName.

d. Enter FIRST_NAME as the column name.

e. Enter char in the External Type text field.

f. Choose String as the internal data type.

g. Enter 30 in the External Width text field.

130 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

h. Click to display the Advanced Attribute Inspector.

i. Select the Allow Null Value option.

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 131
  Apple Computer, Inc. May 2001

j. Repeat steps a through i to add the lastName attribute.

Now, you’ll add the attribute that serves as the primary key.

a. Add a new attribute and name it authorId.

b. Enter AUTHOR_ID as the column name.

c. Enter int in the External Type text field.

d. Choose Integer as the internal data type.

132 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

4. Select a primary key for the Author entity.

a. In the authorId row of the Author Attributes list, click in the column with a
key as its heading so that a key appears in the row.

b. Click in the diamond column of the authorId row so that the diamond
disappears.

The authorId attribute is nothing more than a database artifact, required to
make sure that rows in the AUTHOR table are unique; it has no meaning to
you or the application’s users. The diamond icon indicates that an attribute
is a property that is made available to an application’s custom logic and, if
necessary, the application’s user. Because authorId provides no additional
information about an author, it is not required for the application’s normal
operation.

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 133
  Apple Computer, Inc. May 2001

Figure 10-1 Authors model with Authors entity

Save the model and name it Authors.

The EOModeler Window

The left pane of EOModeler’s main window lists the entities present in the model.
If you click an entity, details about its attributes are displayed in the right pane.

In Figure 10-1 (page 133), you see the Author entity and the definitions of each of its
attributes. The values of the columns indicate the properties of each attribute.

By default, the most commonly used columns are enabled in this view. To enable
other columns, use the Add Column menu in the bottom frame of the window.
These are the available columns and their meanings:

Primary Key
The primary key icon in the first column indicates that the attribute is
used to uniquely identify a row. In the Author entity, only authorId is a
primary key.

134 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

Class Property
The presence of a diamond in the second column indicates that the
attribute is a class property. A class property is one for which
EOModeler generates Java access methods. Generally, any attributes
that are actually a property of the entity are made class properties, and
attributes that are used for database level functionality (such as the
authorId attribute) are not.

Locking
Indicates whether an attribute should be used for locking when an
update is performed. That is, whether Enterprise Objects uses this
attribute to determine whether changes have been made.

Allows Null
Indicates whether the database column can have a null value.

Name
The name of the attribute, which determines the Java method names that
EOModeler generates when it creates the class definition.

Value Class (Java)
The class used to represent this attribute.

External Type
The data type used by the database to represent this attribute.

Width
The maximum width of an attribute, usually used for String attributes.

Column
The name of the database column that corresponds to this attribute.

Definition
The definition for a derived column. A derived attribute doesn’t actually
exist in the database and hence an attribute can’t have both a Definition
and a Column. Setting one clears the other.

Precision
The number of significant digits to include. Used for some numerical
types.

Prototype
The prototype from which this attribute inherits its characteristics. You
can use prototypes to set up default attribute types.

Read Only
Controls whether the attribute can be modified or only read.

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 135
  Apple Computer, Inc. May 2001

Scale
The number of characters to the right of the decimal point in a number
attribute.

Value Type
This type is used in decoding values for enterprise objects represented
by Objective-C classes rather than Java classes and is not used in this
text.

Write Format
Used in tandem with Read Format to write data to the database in a
custom format.

The External Type attribute must be one of the types defined by the JDBC adaptor.
These are the most common ones:

blob

A Binary Large Object. Used to store images and large data files. Usually
represented as an NSData object.

char

Used to store character information and represented with a Java String.
An attribute declared to be a char must have its width set, as well.

date, datetime
Used to store date information and usually represented by an
NSTimestamp object.

double

Used to store floating-point numbers and generically represented by a
Java Number.

int

Used to store integer numbers and usually represented by a Java
Number. Foreign and primary keys are usually best modeled as
integers.

long

Used to store very large integers.

Creating the AUTHOR Table

Now that you have created the Author entity, it is time to create the AUTHOR table
behind it.

1. Select the Author entity from the entity list.

136 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

2. Choose Property > Generate SQL.

3. Make sure that only the Create Tables option is selected.

4. Click Execute SQL.

5. Quit EOModeler.

Creating the Application
In this section you’ll create the Authors application. The application allows its users
to add, edit, and remove authors from the Authors database.

This section introduces the use of enterprise object classes (custom Java classes
derived from entities defined in a model to access database information) and the
methods used to add objects into the data store (adding rows to the AUTHOR table
in the Authors database). You’ll use EOModeler to create the Author.java class.
After adding it to your project, you’ll be able to create Author objects in your code.
You’ll then add those objects to the data store.

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 137
  Apple Computer, Inc. May 2001

Follow these steps to create the Authors application:

1. Create a new WebObjects application project and name it Authors.

2. Add the Authors model to the project.

a. Select Resources from the Groups & Files list.

b. Choose Project > Add Files.

c. Choose the Authors.eomodeld file you created in “Creating the Authors
Model” (page 125) and click Open.

d. Select the “Copy items into destination group’s folder (if needed)” option.

e. Select the Application Server target and click Add.

Customizing the Main component
The entire application’s functionality is provided by the Main component. It
includes an authorList array where the authors are maintained while the
application runs. When the users clicks Save, the changes made to authorList are

138 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

saved to the database. Main.wo includes elements to edit an author’s information
and actions to add, edit, update, and delete authors. A WORepetition shows all the
contents of authorList.

Customizing Main.wo

After following these steps, Main.wo should look like Figure 10-2 (page 140).

1. Open Main.wo in WebObjects Builder.

2. Add three keys.

a. Name the first key author, set its type as EOGenericRecord, and do not
include accessor methods.

b. Name the second key authorItem, set its type as EOGenericRecord, and do
not include accessor methods.

c. Name the third key authorList, choose “Mutable array of” and
EOGenericRecord for its type, and do not include accessor methods.

3. Add six actions, all of them returning null, which tells WebObjects to return the
current page, Main, instead of a new one (the same instance of Main persists
throughout the application’s operation):

addAuthor

deleteAuthor

editAuthor

revertChanges

saveChanges

updateAuthor

4. Add a WOForm element to edit author information.

a. Choose Forms > WOForm.

b. In the WOForm Binding Inspector, choose true for the multipleSubmit
attribute.

c. Inside the WOForm, enter the text “Last Name: “, follow it with a
WOTextField, and press Shift-Enter.

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 139
  Apple Computer, Inc. May 2001

d. Bind the Last Name WOTextField’s value attribute to author.lastName.

e. Enter the text “First Name: “, follow it with a WOTextField, and press
Shift-Enter.

f. Bind the First Name WOTextField’s value attribute to author.firstName.

g. Add two WOSubmitButtons to the WOForm.

Enter “Update” for the first WOSubmitButton’s value attribute (include the
quotation marks), and bind its action attribute to the updateAuthor action.

Enter “Add” for the second WOSubmitButton’s value attribute, and bind its
action attribute to the addAuthor action.

5. Add a second WOForm below the first one for the Save and Revert
WOSubmitButtons.

a. Set the WOForm’s multipleSubmit attribute to true.

b. Add a WOSubmitButton inside the WOForm, enter “Revert” for its value
attribute, and bind its action attribute to revertChanges.

c. Add another WOSubmitButton to the right of the Revert WOSubmitButton,
enter “Save” for its value attribute, and bind its action attribute to
saveChanges.

6. Add a WORepetition to display the list of authors.

a. Add the WORepetition below the second WOForm.

b. Add two WOHyperlinks, separated by a space character, inside the
WORepetition.

Enter Edit as the first WOHyperlink’s caption and bind its action attribute
to editAuthor.

Enter Delete as the second WOHyperlink’s caption and bind its action
attribute to deleteAuthor.

c. Add two WOStrings, separated by “, “ to the right of the Delete
WOHyperlink.

Bind the first WOString to authorItem.lastName and the second to
authorItem.firstName.

Note: Since author, authorItem, and authorList are EOGenericRecords,
WebObjects Builder does not know what their properties are. You must type the
keypaths for them manually.

140 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

Put the cursor on the right of the second WOString and press Shift-Enter.

d. Bind WORepetition’s list attribute to authorList, and its item attribute to
authorItem.

7. Save Main.wo.

Figure 10-2 Main.wo with elements to maintain author information

Customizing Main.java

Now you’ll edit Main.java to add the application’s custom logic.

1. Add the following instance variables:

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 141
  Apple Computer, Inc. May 2001

private EOEditingContext editingContext;

private EOClassDescription authorClassDescription;

private EOFetchSpecification fetchSpec;

Several methods in the Main class require the use of the editing context, class
description, and fetch specification. Having the class’s constructor store these
objects in instance variables reduces the lines of code required to implement
those methods.

2. Edit the constructor to perform custom initialization.

When the Main component is created, it needs to request and store the editing
context and retrieve the authors stored in the database (the first time you run the
application, there’s nothing to retrieve).

Edit the constructor so that it looks like Listing 10-1.

Listing 10-1 The constructor in Main.java

public Main(WOContext context) {

super(context);

// build fetch specification

fetchSpec = new EOFetchSpecification("Author", null, null);

// get editing context

editingContext = session().defaultEditingContext();

// fetch

authorList = new

NSMutableArray(editingContext.objectsWithFetchSpecification(fetchSpec));

 // get Author class description

authorClassDescription =

EOClassDescription.classDescriptionForEntityName("Author");

// create a new Author object (where form data is stored)

author = new EOGenericRecord(authorClassDescription);

}

142 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

There are three parts to retrieving data from a database with WebObjects: the
fetch specification, the editing context, and the fetch.

� EOFetchSpecification. An EOFetchSpecification is an object representation
of a request for objects from the object store (database). It describes the
objects that you want to retrieve. You can create fetch specifications
programmatically or define them in the EOModel file.

A fetch specification is defined in three parts—the entity to fetch, restrictions
used to filter the fetched objects, and the order of the result. The last two are
optional, but the first one must be provided when the fetch specification is
created.

� Editing Context. Fetches are performed through an editing context, which is
responsible for maintaining the object graph for the fetched objects.

� Fetch. After a fetch specification has been defined, it can be used to fetch data
from the object store. WebObjects translates the fetch specification into SQL
statements that your database system can understand. The database returns
a list of rows that WebObjects translates into enterprise objects (instances of
EOGenericRecord) before returning them in an NSArray.

3. Edit the addAuthor method to that it looks like Listing 10-2.

Listing 10-2 The addAuthor method in Main.java

public WOComponent addAuthor() {

// add only if the author is not already in the list

if (! authorList.containsObject(author)) {

// add author to list

authorList.addObject(author);

// insert author into editing context

 editingContext.insertObject(author);

// create a new author

author = new EOGenericRecord(authorClassDescription);

}

return null;

}

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 143
  Apple Computer, Inc. May 2001

Because of Enterprise Objects’s Java integration, inserting a new row in your
database is almost as simple as adding an item to an array. Once your class is
defined as a subclass of EOGenericRecord, all you need to do is insert the object
into an editing context; it is then maintained in the object graph like other objects
fetched from the database. When the saveChanges method is called, a new row is
created in the database for each object added to the editing context.

The addAuthor method is invoked when the user clicks Add. If the user isn’t
editing an existing author, it inserts the Author object that the user edited
(through the first form’s text fields) into authorList, and inserts it in the object
graph maintained by the editing context as well. It then creates a new Author
object, where another author’s data can be stored. (Note that the new instance is
added to the object graph only if the user clicks Add again.)

4. Edit the deleteAuthor method so that it looks like Listing 10-3.

Listing 10-3 The deleteAuthor method in Main.java

public WOComponent deleteAuthor() {

// remove author from authorList

authorList.removeObject(authorItem);

// get object’s editing context

EOEditingContext ec = authorItem.editingContext();

// remove author from object graph

ec.deleteObject(authorItem);

return null;

}

In multiuser applications an object can be in a different editing context than the
default one. When you need to delete an enterprise object from a data store, you
should ask the object itself for its editing context. Then you invoke that editing
context’s deleteObject method.

5. Edit the editAuthor method so that it looks like Listing 10-4.

144 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

Listing 10-4 The editAuthor method in Main.java

public WOComponent editAuthor() {

// set the author to edit to the one the user selected

author = authorItem;

return null;

}

When the user clicks Edit, authorItem contains the author object to be edited. The
next time the page is drawn, the text fields are populated with the information
for the selected author.

6. Edit the updateAuthor method so that it looks like Listing 10-5.

Listing 10-5 The updateAuthor method in Main.java

public WOComponent updateAuthor() {

// create a new author

author = new EOGenericRecord(authorClassDescription);

return null;

}

When the user clicks Update, the Author object she edited gets updated with the
values entered in the form’s text fields (the object is already in the list).
Therefore, the only thing this method needs to do is create a new Author object.
The next time the page is drawn, the text fields are populated with nothing
(because they get their data from the new, empty Author object), enabling the
user to enter the information for a new author.

7. Edit the saveChanges method so that it looks like Listing 10-6.

Listing 10-6 The saveChanges method in Main.java

public WOComponent saveChanges() {

// save changes made in editing context to object store

editingContext.saveChanges();

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 145
  Apple Computer, Inc. May 2001

return null;

}

8. Edit the revertChanges method so that it looks like Listing 10-7.

Listing 10-7 The revertChanges method in Main.java

public WOComponent revertChanges() {

// revert changes made in editing context

editingContext.revert();

// re-fetch

authorList = new

NSMutableArray(editingContext.objectsWithFetchSpecification(fetchSpec));

return null;

}

When the user clicks Revert, the revertChanges method tells the editing context
to discard any changes made since the enterprise objects in it were last fetched
or saved. However, the authorList array isn’t tied to the editing context in any
way. Therefore, you must retrieve a new list of authors from the object store and
assign it to authorList, so that the user sees up-to-date information. (The
previous list is garbage-collected by the Java runtime after it is no longer
referenced by variables in your application.)

9. Save Main.java.

Running the Authors Application
Figure 10-3 shows the Authors application after the names of some authors have
been entered.

146 The Authors Application
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

Figure 10-3 The Authors application

There is only one instance of Main throughout the application’s execution (all the
actions return null). When Main is created, it reads the authors from the database
and stores them in the authorList instance variable. As the user makes changes,
authorList (and its editing context) is updated. The WORepetition element displays
the contents of authorList and links so that the user can edit or delete a particular
author. Changes are saved when the user clicks Save.

C H A P T E R 1 0

Working With Editing Contexts

The Authors Application 147
  Apple Computer, Inc. May 2001

Notice that all the complexities normally required when dealing with databases
have been replaced with the straightforward use of enterprise objects.

Browsing the Database
It is frequently convenient to browse the raw data in a database, including attributes
that may not be displayed by your WebObjects components. EOModeler has the
ability to browse tables and perform basic filtering, which is useful during
application development. This simple facility lets you get a “behind the scenes”
look at your data.

1. Open the Authors model in EOModeler

2. Select the Author entity.

3. Choose Tools > Data Browser.

Figure 10-4 EOModeler’s Data Browser

Current database data is displayed. The Refetch button allows you to refresh this
data on demand.

148 Further Exploration
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

EOModeler also lets you perform simple filters to limit the number of rows
displayed as Figure 10-5 shows.

Figure 10-5 Data Browser using filter

Further Exploration

The third parameter of the constructor for an EOFetchSpecification can be an
NSArray of EOSortOrderings. You can examine the EOSortOrdering class using the
Java Browser.

To create an EOSortOrdering, you specify the attribute to sort on and the selector to
be used for sorting. Four selectors are defined in the EOSortOrdering class:

� CompareAscending

� CompareDescending

� CompareCaseInsensitiveAscending

C H A P T E R 1 0

Working With Editing Contexts

Further Exploration 149
  Apple Computer, Inc. May 2001

� CompareCaseInsensitiveDescending

The case insensitive versions of the ascending and descending selectors are for use
with strings and ignore the case of characters when sorting.

A fetch specification created with a sort ordering in place might look like Listing
10-8.

Listing 10-8 Fetch specification that uses sort orderings

EOSortOrdering lastNameSort = new EOSortOrdering("lastName",

EOSortOrdering.CompareCaseInsensitiveAscending);

EOSortOrdering firstNameSort = new EOSortOrdering("firstName",

EOSortOrdering.CompareCaseInsensitiveAscending);

NSMutableArray sortOrderings = new NSMutableArray();

sortOrderings.addObject(lastNameSort);

sortOrderings.addObject(firstNameSort);

EOFetchSpecification authorFetch = new EOFetchSpecification("Author", null,

sortOrderings);

150 Further Exploration
  Apple Computer, Inc. May 2001

C H A P T E R 1 0

Working With Editing Contexts

Generating a Custom Class 151
  Apple Computer, Inc. May 2001

C H A P T E R 1 1

11 Using Custom Objects

You’ve already seen how easy it is to manipulate database rows by representing
them as EOGenericRecords. Now, instead of using generic enterprise objects, you’ll
create an enterprise object class and customize its behavior.

In this chapter, you

� generate a custom Java class

� add custom logic to an enterprise object class

� learn how to set default values for enterprise objects’s properties

Generating a Custom Class

The first step in customizing the behavior of enterprise objects is the generation of
custom classes from entity definitions in your model (enterprise objects classes).
You’ll continue working on the Authors project created in “Working With Editing
Contexts” (page 123), including the Authors model.

EOModeler generates a Java class based on the attributes of entities as they’re
defined in the model.

Generating a Java Class From a Model Entity
To generate a Java class representing the Author entity, perform the following steps:

152 Generating a Custom Class
  Apple Computer, Inc. May 2001

C H A P T E R 1 1

Using Custom Objects

1. Double-click the Authors.eomodeld model file in the Resources group to open it
in EOModeler.

2. In EOModeler, select the Author entity.

3. Choose Property > Generate Java Files.

4. Navigate to your project’s directory and click Save.

5. Close Authors.eomodeld.

Adding a Java Class to the Project
To add Author.java to the project, follow these steps:

1. Select Classes in the Groups & Files list in Project Builder’s main window,

2. Choose Project > Add Files.

3. Select Author.java in your project’s directory and click Open.

C H A P T E R 1 1

Using Custom Objects

Generating a Custom Class 153
  Apple Computer, Inc. May 2001

4. Select the Application Server target and click Add.

154 Generating a Custom Class
  Apple Computer, Inc. May 2001

C H A P T E R 1 1

Using Custom Objects

EOModeler generates the code in Listing 11-1.

Listing 11-1 Author.java generated by EOModeler

import com.webobjects.foundation.*;

import com.webobjects.eocontrol.*;

public class Author extends EOGenericRecord {

public Author() {

super();

}

public String firstName() {

return (String)storedValueForKey("firstName");

}

public void setFirstName(String value) {

takeStoredValueForKey(value, "firstName");

}

public String lastName() {

return (String)storedValueForKey("lastName");

C H A P T E R 1 1

Using Custom Objects

Modifying the Authors Project 155
  Apple Computer, Inc. May 2001

}

public void setLastName(String value) {

takeStoredValueForKey(value, "lastName");

}

}

The class file generated by EOModeler contains accessor methods for the attributes
declared to be class properties.

There are a few things in particular to notice about this file.

� The Author class extends the EOGenericRecord class. This way, all the default
behavior of EOGenericRecord is present in your class.

� There are no instance variables in the Author class. Instead, values are accessed
via the accessor methods, which use key-value coding.

If you add code that modifies data to a custom Java class and you want the
changes to be stored in the database, you should use these accessor methods to
set the affected properties.

Modifying the Authors Project

Your code is written to work with EOGenericRecords. To take advantage of the
Author class, you need to alter the definitions of variables and methods that interact
with Author objects in your program, making them Author objects rather than
EOGenericRecords.

Make the following changes to the Main.java class:

1. Change the @TypeInfo line above the authorList’s definition so that it reads

/** @TypeInfo Author */

2. Change the class of the authorItem and author instance variables from
EOGenericRecord to Author.

3. Delete the authorClassDescription instance-variable definition and its
assignment in the constructor.

156 Modifying the Authors Project
  Apple Computer, Inc. May 2001

C H A P T E R 1 1

Using Custom Objects

You only needed the class description to create new instances of
EOGenericRecord with the correct type information. Now that you’ll be using
the Author class, the class description is no longer needed.

4. Change the constructor, addAuthor, and updateAuthor methods to create a new
Author object instead of a new EOGenericRecord object.

author = new Author();

5. Save Main.java.

After making those changes, Main.java should look similar to Listing 11-2.

Listing 11-2 Main.java modified to use Author class instead of EOGenericRecord

Main.java modified to use custom Author class instead of EOGenericRecord

import com.webobjects.foundation.*;

import com.webobjects.appserver.*;

import com.webobjects.eocontrol.*;

import com.webobjects.eoaccess.*;

public class Main extends WOComponent {

 protected Author author;

 protected Author authorItem;

 private EOEditingContext editingContext;

 private EOFetchSpecification fetchSpec;

/** @TypeInfo Author */

 protected NSMutableArray authorList;

 public Main(WOContext context) {

 super(context);

// build fetch specification

fetchSpec = new EOFetchSpecification("Author", null, null);

// get editing context

editingContext = session().defaultEditingContext();

// fetch

C H A P T E R 1 1

Using Custom Objects

Modifying the Authors Project 157
  Apple Computer, Inc. May 2001

authorList = new

NSMutableArray(editingContext.objectsWithFetchSpecification(fetchSpec));

// create a new Author object (where form data is stored)

author = new Author();

 }

 public WOComponent addAuthor() {

// add only if the author is not already in the list

if (! authorList.containsObject(author)) {

// add author to list

authorList.addObject(author);

// insert author into editing context

 editingContext.insertObject(author);

// create a new author

author = new Author();

}

 return null;

 }

 public WOComponent deleteAuthor() {

// remove author from authorList

authorList.removeObject(authorItem);

// get object’s editing context

EOEditingContext ec = authorItem.editingContext();

// remove author from object graph

ec.deleteObject(authorItem);

 return null;

 }

 public WOComponent editAuthor() {

// set the author to edit to the one the user selected

author = authorItem;

return null;

 }

158 Adding Custom Logic
  Apple Computer, Inc. May 2001

C H A P T E R 1 1

Using Custom Objects

 public WOComponent revertChanges() {

// revert changes made in editing context

editingContext.revert();

// refetch

authorList = new

NSMutableArray(editingContext.objectsWithFetchSpecification(fetchSpec));

 return null;

 }

 public WOComponent saveChanges() {

// save changes made in editing context to object store

editingContext.saveChanges();

 return null;

 }

 public WOComponent updateAuthor() {

// create a new author

author = new Author();

 return null;

 }

}

No further changes need to be made for the application to run just as before.
Because Author is a subclass of EOGenericRecord, it still responds to the keypaths
in the WOD file of the Main component. Build and run the application to confirm it.

Adding Custom Logic

Now that the Author entity is represented by the Author class, you can add custom
methods to it.

C H A P T E R 1 1

Using Custom Objects

Using Custom Logic 159
  Apple Computer, Inc. May 2001

Frequently, you’ll want to display data in a form different from that used to is
record it in the database. For example, it would be convenient to have a single
method in the Author class that returns an author’s full name, last name first with
a comma separating the last and first names. A similar technique is used in the
Authors application (two WOStrings separated by a comma), but putting the logic
into a single method allows you to easily suppress the comma if the first name is not
present.

Add the fullName method shown in Listing 11-3 to the Author class, and save
Author.java.

Listing 11-3 The fullName method in Author.java

public String fullName() {

String first = firstName();

String last = lastName();

String full;

if ((first != null) && (! (first.equals("")))) {

full = last + ", " + first;

}

else {

full = last;

}

return full;

}

Using Custom Logic

In this section you’ll modify Main.wo to use the fullName property of Author to
display an author’s full name.

1. Open the Main.wo component in WebObjects Builder.

160 Using Custom Logic
  Apple Computer, Inc. May 2001

C H A P T E R 1 1

Using Custom Objects

Figure 11-1 shows that WebObjects Builder recognizes the type of authorItem as
Author. Also, a browser for the Author class appears next to the browser for the
Main class. Notice that the new method, fullName, is represented as a property
of the authorItem variable.

Figure 11-1 Main.wo after adding the fullName derived property to Author.java

2. Remove the comma and the WOString that displays authorItem.firstName.

3. Bind the remaining WOString’s value attribute to authorItem.fullName. You can
now use the drag method to perform the binding because WebObjects Builder
has more information about authorItem than when it was an EOGenericRecord.
Your component should look like Figure 11-2.

C H A P T E R 1 1

Using Custom Objects

Using Custom Logic 161
  Apple Computer, Inc. May 2001

Figure 11-2 Main.wo using the fullName derived property

4. Save Main.wo, and build and run the application.

Figure 11-3 shows that when an author’s first name is missing, the comma is not
displayed, as it was before.

162 Using Custom Logic
  Apple Computer, Inc. May 2001

C H A P T E R 1 1

Using Custom Objects

Figure 11-3 The Authors application using the fullName method to display author
information

C H A P T E R 1 1

Using Custom Objects

Setting Default Values 163
  Apple Computer, Inc. May 2001

Setting Default Values

When an Author object is instantiated, its first and last name attributes have no
values. Sometimes default values should be provided for properties of your
enterprise objects. There are several ways to do accomplish this.

You could assign initial values in the same method that creates the new instance.
You could do so by simply invoking the setLastName and setFirstName methods on
the new instance with the appropriate arguments. One advantage of this approach
is that it allows you to create new instances with different defaults depending on
certain circumstances.

Alternatively, you can provide initial values in the Author class itself, so that no
values need to be set when the instance is created. This is the strategy you will use
for the Author entity.

You can also combine these methods—setting a default in the class and overriding
it in the specific cases you wish to.

Modify the constructor in Author.java so that it looks like Listing 11-4.

Listing 11-4 The constructor in Author.java—setting default value for lastName

public Author() {

 super();

 setLastName("*required*");

}

When you build and run the application, “*required*” appears in the Last Name
text field whenever a new author object is created.

164 Setting Default Values
  Apple Computer, Inc. May 2001

C H A P T E R 1 1

Using Custom Objects

Completing the Authors Model 165
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

12 Working With Relationships

Relationships between entities are an integral part of developing Enterprise Objects
applications. In this chapter you’ll explore how to implement the relationships
described in “Relationship” (page 111) by adding a Book entity and creating to-one
and to-many relationships between Author and Book.

In this chapter, you

� use EOModeler to add the Book entity to the Authors model

� use EOModeler to add the BOOK table to the Authors database

� use EOModeler to create relationships between the Author and Book entities

� use relationships in Java code

� construct a fetch specification

� perform an in-memory sort

Completing the Authors Model

To complete the Authors model, you’ll add the Book entity to it. After defining the
entity’s attributes, you’ll add the BOOK table to the Authors database. Then you’ll
add the relationships between Author and Book.

166 Completing the Authors Model
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

Define the Book Entity
In this section you’ll create the Book entity and define its attributes, including its
primary and foreign keys.

1. Open Authors.eomodeld in EOModeler.

2. Create a new entity.

a. Choose Property > Add Entity.

b. Choose Tools > Inspector.

c. Enter Book in the Name and Class text fields.

d. Enter BOOK in the Table Name text field.

3. Add and configure Book’s attributes.

C H A P T E R 1 2

Working With Relationships

Completing the Authors Model 167
  Apple Computer, Inc. May 2001

The Book entity has one major attribute, title, which stores a book’s title. It also
needs a primary key attribute, bookId, to ensure that all the rows in the BOOK
table are unique. Finally, it requires an additional attribute, a foreign key, which
is used to link a book to its author. This last attribute is named authorId.

Add the title attribute by following these steps:

a. Make sure the Book entity is selected in entity list.

b. Add a new attribute and name it title.

c. Enter TITLE as the column name.

d. Enter char as the external type.

e. Choose String as the internal data type.

f. Enter 50 in the External Width text field.

g. Select the Allow Null Value option in the Advanced Attribute Inspector.

Add the bookId attribute:

168 Completing the Authors Model
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

a. Add a new attribute and name it bookId.

b. Enter BOOK_ID as the column name.

c. Enter int as the external data type.

d. Choose Integer as the internal data type.

e. Make sure the Allow Null Value option is not selected.

Add the authorId attribute (this is the foreign key that relates a book to its
author):

a. Add a new attribute and name it authorId.

b. Enter AUTHOR_ID as the column name.

c. Enter int as the external type.

d. Choose Integer as the internal data type.

e. Make sure the Allow Null Value option is not selected.

4. Select the primary key attribute for the Book entity.

C H A P T E R 1 2

Working With Relationships

Completing the Authors Model 169
  Apple Computer, Inc. May 2001

a. In the bookId row of the Book Attributes list, click in the column with a key
as its heading so that a key appears in the row.

b. Click in the diamond column of the bookId row so that the diamond
disappears (the value of the bookId attribute is not relevant to the
application).

5. Make authorId a hidden attribute.

For the same reason that bookId is irrelevant, the value of authorId is of no
interest to the application.

Click in the diamond column of the authorId row in the Book Attributes list, so
that the diamond disappears.

Create the BOOK Table
In this section, you’ll create the BOOK table, just like you created the AUTHOR
table in “Creating the AUTHOR Table” (page 135).

1. Select the Book entity from the entity list.

2. Choose Property > Generate SQL.

3. Make sure that only the Create Tables option is selected.

170 Completing the Authors Model
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

4. Click Execute SQL.

Define the Model’s Relationships
Now that the Book entity is defined, you will relate it to the Author entity.

The relationship between Author and Book is bidirectional. Each author can have
many books, while each book has only one author.

Create the relationships by following these steps:

1. Choose Tools > Diagram View.

2. Control-drag from Author.authorId to Book.authorId.

This creates two relationships: a to-many relationship from Author to Book,
using authorId as the linking attribute; and a to-one relationship from Book to
Author, again using authorId as the linking attribute.

C H A P T E R 1 2

Working With Relationships

Completing the Authors Model 171
  Apple Computer, Inc. May 2001

Figure 12-1 graphically depicts the two relationships. Book is linked to Author
by a single-headed arrow, meaning that a book can have one author. Whereas
Author is linked to Book by a double-headed arrow, meaning that an author can
have more than one book.

Figure 12-1 Relationships in the Authors model

Deletion can become complex due to the relationships between entities. For
example, if you delete an Author object, what should happen to the Book objects
associated with it? You can define the behavior you desire by using delete rules in
your model.

172 Completing the Authors Model
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

What Are Delete Rules?

Each relationship has a delete rule that tells Enterprise Objects what to do when
you try to delete the source object. The following are the possible behaviors:

� Nullify. Delete the object and nullify any relationships that point back to it from
other entities. (The value of the foreign key property in target objects is set to
null.)

� No action. Delete the object and perform no other action.

� Cascade. Delete the object and all the objects that are targets of the relationship
(child objects).

� Deny. Do not delete the object if child objects exist. This rule is typically used
when child-object deletion should receive special processing before the parent is
deleted.

Delete Rules in the Authors Model

In the case of deletion of a book, it makes the most sense to delete the book and
remove it from the Author entity’s books relationship. This is an example of the
Nullify delete rule. If you examine the author relationship of the Book entity, you’ll
see that it is already configured with the Nullify delete rule selected. Therefore, you
don’t need to alter it. However, that default is not appropriate when an author is
deleted.

Follow these steps to configure the books relationship of the Authors entity so that
all of an author’s books are deleted when the author is removed from the database:

1. Select the books relationship of the Author entity.

2. Open the Inspector.

3. Display the Advanced Relationship Inspector.

4. Select Cascade as the delete rule.

C H A P T E R 1 2

Working With Relationships

Using Relationships in Your Code 173
  Apple Computer, Inc. May 2001

5. Select the Owns Destination option.

6. Save Books.eomodeld.

Using Relationships in Your Code

In this section you’ll add to your application the ability to maintain an author’s
books.

Before you can begin, you need to add the Java classes for Author and Book to your
project. Because you’ve customized Author.java, you’ll need to merge the new code
generated by EOModeler with your own.

174 Using Relationships in Your Code
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

Add Java Classes for Author and Book to the Project

1. Open the Authors project in Project Builder.

2. Open Authors.eomodeld in EOModeler.

3. Update your project’s Author.java class.

a. Select the Author entity in the entity list.

b. Choose Property > Generate Java Files.

You are notified that Author.java already exists and asked how you wish to
proceed.

Click Merge. The FileMerge application launches.

c. Merge the files.

As Figure 12-2 shows, FileMerge outlines and separates the differences
between the two files. The file generated by EOModeler is on the left, and the
the one that you customized is on the right.

C H A P T E R 1 2

Working With Relationships

Using Relationships in Your Code 175
  Apple Computer, Inc. May 2001

Figure 12-2 FileMerge window

FileMerge highlights the differences between the files. Each highlighted area
has a numbered arrow.

In this case you need to integrate the differences into the new file. The most
important difference to include in the new Author.java file is the fullName
method.

Click the arrow in the area that contains the fullName method and choose
“Choose both (left first)” from the Actions pop-up menu, as shown in Figure
12-3.

176 Using Relationships in Your Code
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

Figure 12-3 FileMerge window—adding fullName method to new Author.java

Repeat the process with the rest of the highlighted areas (you can ignore
sections containing comments).

Choose File > Save Merge to save the new Author.java file.

4. Add Book.java to the project.

a. Select the Book entity in the entity list in EOModeler’s main window.

b. Choose Property > Generate Java Files.

c. Save Book.java in your project’s directory.

d. Add Book.java to the project.

(For details on adding a custom Java class to a project, see “Adding a Java
Class to the Project” (page 152).)

C H A P T E R 1 2

Working With Relationships

Using Relationships in Your Code 177
  Apple Computer, Inc. May 2001

To-One Relationships in Java

The author method in Listing 12-1 implements the author relationship, a to-one
relationship from Book to Author.

Listing 12-1 The methods that implement the author relationship in Book.java

public Author author() {

return (Author)storedValueForKey("author");

}

public void setAuthor(Author value) {

takeStoredValueForKey(value, "author");

}

}

Enterprise Objects follows the procedure described in “To-One Relationships”
(page 112) when you access the author property of Book objects.

To-Many Relationships in Java

The code in Listing 12-2 implements the to-many relationship between Author and
Book, books.

Listing 12-2 The methods that implement the books relationship in Author.java

public NSArray books() {

return (NSArray)storedValueForKey("books");

}

public void setBooks(NSMutableArray value) {

takeStoredValueForKey(value, "books");

}

public void addToBooks(Book object) {

NSMutableArray array = (NSMutableArray)books();

willChange();

array.addObject(object);

}

public void removeFromBooks(Book object) {

NSMutableArray array = (NSMutableArray)books();

178 Using Relationships in Your Code
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

willChange();

array.removeObject(object);

}

}

Notice that the books associated with a particular author can be retrieved as an
NSArray simply by calling the books method. The NSArray returned is an array of
Book objects. Changes made to them are automatically tracked by the editing
context and are saved when saveChanges is called. Further, a book can be added to
or removed from an author’s list using the two provided methods, addToBooks and
removeFromBooks. In that case, however, the editing context has to be notified of the
change.

At the database level, the AUTHOR_ID column in the BOOK table corresponds to
the AUTHOR_ID of the owning AUTHOR row. Adding a book to an author’s array
is actually a matter of setting AUTHOR_ID on the new BOOK row to the same value
as the author’s AUTHOR_ID. When you use the addToBooks method, Enterprise
Objects takes care of updating the value of the authorId property of the Book object
for you.

Create the AuthorBookEdit Component
In this section you’ll create the component that allows your application’s user to
maintain the books of a specific author.

AuthorBookEdit.wo

After performing the steps below, your AuthorBookEdit.wo component should look
like Figure 12-4 (page 180).

1. Add the AuthorBookEdit component to the project.

This component allows editing the list of books an author has written.

a. Select Web Components from the Groups & Files list.

b. Choose File > New File.

c. Under WebObjects, select Component and click Next.

d. Name the component AuthorBookEdit and click Finish.

2. Design AuthorBookEdit.wo.

C H A P T E R 1 2

Working With Relationships

Using Relationships in Your Code 179
  Apple Computer, Inc. May 2001

a. Open AuthorBookEdit.wo in WebObjects Builder.

b. Add the author key to the component, choose Author as its type, and include
accessor methods.

c. Add the bookItem key to the component, choose Book as its type, and do not
include accessor methods.

d. Add an action called deleteBook that returns null.

e. Add an action called addBook that returns null.

f. Add an action called returnToMain that returns an object of type Main.

g. Enter the label “Books by “, add a WOString after it, and press Shift-Enter.

h. Select the line containing the label and the WOString, and choose Elements
> Heading > H3.

i. Bind the WOString to author.fullName.

j. Add a WORepetition element.

Bind the list attribute to author.books.

Bind the item attribute to bookItem.

k. Add the WORepetition’s content.

Add a WOHyperlink, a space character, and a WOTextField inside the
WORepetition and press Shift-Enter.

Enter Delete as the WOHyperlink’s caption, and bind its action attribute to
deleteBook.

Bind the WOTextField’s value attribute to bookItem.title.

l. Add two WOSubmitButtons below the WORepetition.

Enter “Done” for the value attribute of the first WOSubmitButton, and bind its
action attribute to returnToMain.

Enter “Add” for the value attribute of the second WOSubmitButton, and bind
its action attribute to addBook.

m. Add a WOForm element that encompasses all the elements you’ve added so
far.

Select all the elements by choosing Edit > Select All.

Choose Forms > WOForm.

180 Using Relationships in Your Code
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

Click anywhere inside a WOForm where there are no elements.

Choose Window > Inspector.

Choose true for the multipleSubmit attribute of the WOForm.

3. Save AuthorBookEdit.wo.

Figure 12-4 AuthorBookEdit.wo

AuthorBookEdit.java

The Java code of the AuthorBookEdit component needs to be edited to implement
the procedures needed to add and delete books from the books relationship of
Author objects. However, all you have to do is maintain an array of books, in the
same way as you would manipulate an NSArray (add an object to the array to add
a book, and remove objects from it to delete books). The only additional code you
need to include is to notify the editing context of the changes made to the array.

C H A P T E R 1 2

Working With Relationships

Using Relationships in Your Code 181
  Apple Computer, Inc. May 2001

1. Modify the deleteBook method so that it looks like Listing 12-3.

Listing 12-3 The deleteBook method in AuthorBooEdit.java

public WOComponent deleteBook() {

 // get editing context from book object

 EOEditingContext ec = bookItem.editingContext();

 // delete book from its editing context

 ec.deleteObject(bookItem);

// remove object from relationship

author.removeObjectFromBothSidesOfRelationshipWithKey(bookItem,

"books");

 return null;

}

The action method first removes the book from the books array of author, and
then notifies the editing context that the enterprise object in question should be
deleted the next time changes are saved.

When the page refreshes, the book in question is no longer displayed in the list
because it has been removed from the books array (relationship) by the
removeObjectFromBothSidesOfRelationshipWithKey method.

2. Modify the addBook method so that it looks like Listing 12-4.

Listing 12-4 The addBook method in AuthorBookEdit.java

public WOComponent addBook() {

 // get editing context

 EOEditingContext ec = session().defaultEditingContext();

 // create new book object

 Book newBook = new Book();

 newBook.setTitle("New Book");

 // insert new book into editing context

182 Using Relationships in Your Code
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

 ec.insertObject(newBook);

 // add new book to books and set author for it

 author.addObjectToBothSidesOfRelationshipWithKey(newBook, "books");

 return null;

}

The addObjectToBothSidesOfRelationshipWithKey method takes care of adding
the new book to the books array of author, as well as setting the author property
for the new book. Alternatively, you could have set each relationship
individually, as shown in Listing 12-5.

Listing 12-5 Method calls to add a book and set its author

author.addToBooks(newBook);

newBook.setAuthor(author);

Modify Session.java
The major change that needs to be made to the Session.java class is adding the
authorList instance variable. Each Session object also needs to fetch the list of
authors during its creation.

1. Cut the fetchSpec instance variable definition from Main.java and paste it in
Session.java:

private EOFetchSpecification fetchSpec;

2. Edit the constructor so that it matches Listing 12-6.

Listing 12-6 The constructor in Session.java

public Session() {

 super();

// build fetch specification

fetchSpec = new EOFetchSpecification("Author", null, null);

C H A P T E R 1 2

Working With Relationships

Using Relationships in Your Code 183
  Apple Computer, Inc. May 2001

// fetch

 fetchAuthorList();

}

3. Add the fetchAuthorList method in Listing 12-7.

Listing 12-7 The fetchAuthorList method in Session.java

public void fetchAuthorList() {

 // get editing context

 EOEditingContext ec = defaultEditingContext();

 // fetch

 authorList = new

NSMutableArray(ec.objectsWithFetchSpecification(fetchSpec));

}

4. Add the addAuthor method in Listing 12-8. (You can copy and paste the
addAuthor method in Main.java and make the necessary modifications.)

Listing 12-8 The addAuthor method in Session.java

public boolean addAuthor(Author author) {

 // add only if the author is not already in the list

 if (! authorList.containsObject(author)) {

 // add author to list

 authorList.addObject(author);

 // insert author into editing context

 defaultEditingContext().insertObject(author);

 return true;

 }

 else {

 return false;

 }

}

184 Using Relationships in Your Code
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

5. Add the deleteAuthor method in Listing 12-9. (You can copy and paste the
deleteAuthor method in Main.java, and make the necessary modifications.)

Listing 12-9 The deleteAuthor method in Session.java

public void deleteAuthor(Author author) {

 // remove author from authorList

 authorList.removeObject(author);

 // get object’s editing context

 EOEditingContext ec = author.editingContext();

 // remove author from object graph

 ec.deleteObject(author);

}

6. Save Session.java.

7. Add the authorList instance variable.

a. In WebObjects Builder, select session from the AuthorBookEdit browser.

b. Control-click in the Session browser and choose Add Key to Session.

c. Name the key authorList, set its type to a mutable array of Author, and
generate accessor methods.

Modify the Main Component
The Main component needs to display the AuthorBookEdit component, so that the
application’s user can edit an author’s books. To accomplish that, a WOHyperlink
and its action need to be added to Main.wo.

Main.wo

A new action, editBooks, needs to be added to the component. It also needs a new
WOHyperlink, which invokes the new action. After completing the required
changes, your Main.wo should look like Figure 12-5 (page 186).

1. Open Main.wo in WebObjects Builder.

C H A P T E R 1 2

Working With Relationships

Using Relationships in Your Code 185
  Apple Computer, Inc. May 2001

2. Add a new action named editBooks that returns AuthorBookEdit.

3. Add a WOHyperlink between the Delete WOHyperlink and the WOString
inside the WORepetition.

Set the caption to Books and bind its action attribute to editBooks.

4. Bind the WORepetition’s list attribute to session.authorList.

5. Delete the authorList key.

a. Select authorList in Main’s browser.

b. Choose “Delete authorList“ from the Edit Source pop-up menu.

6. Save Main.wo.

186 Using Relationships in Your Code
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

Figure 12-5 Main.wo with the editBooks action and the Books WOHyperlink

Main.java

1. Add a session instance variable.

private Session session;

2. Edit the constructor so that it looks like Listing 12-10.

C H A P T E R 1 2

Working With Relationships

Using Relationships in Your Code 187
  Apple Computer, Inc. May 2001

Listing 12-10 The constructor in Main.java

 public Main(WOContext context) {

 super(context);

// get session

session = (Session)session();

// get editing context

editingContext = session.defaultEditingContext();

 // create a new author object (where form data is stored)

 author = new Author();

 }

3. Edit the addAuthor method so that it looks like Listing 12-11.

Listing 12-11 The addAuthor method in Main.java—uses the addAuthor method in
Session.java

public WOComponent addAuthor() {

if (session.addAuthor(author) {

// create a new author

author = new Author();

}

 return null;

}

4. Edit the deleteAuthor method so that it looks like Listing 12-12.

Listing 12-12 The deleteAuthor method in Main.java—uses the deleteAuthor method in
Session.java

public WOComponent deleteAuthor() {

 session.deleteAuthor(authorItem);

 return null;

}

5. Edit the editBooks method so that it looks like Listing 12-13.

188 Using Relationships in Your Code
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

Listing 12-13 The editBooks method in Main.java—sends Author object to
AuthorBookEdit component

public AuthorBookEdit editBooks() {

 AuthorBookEdit nextPage =

(AuthorBookEdit)pageWithName("AuthorBookEdit");

 // Initialize your component here

 nextPage.setAuthor(authorItem);

 return nextPage;

}

The editBooks method needs to send the author whose books are to be edited to
the AuthorBookEdit component (the next page to be displayed).

6. Edit the revertChanges method so that it matches Listing 12-14.

Listing 12-14 The revertChanges method in Main.java—uses default editing context and
the fetchAuthorList method in Session.java

public WOComponent revertChanges() {

 // revert object graph

 editingContext.revert();

 // refetch

 session.fetchAuthorList();

 return null;

}

This method now uses the session’s fetchAuthorList method because the author
list is stored in the session, not the Main component.

7. Save Main.java.

C H A P T E R 1 2

Working With Relationships

Running the Application 189
  Apple Computer, Inc. May 2001

Running the Application

Build and run your application. When the user clicks on an author’s Book link,
Main’s editBook method creates an AuthorBookEdit object and tells it which author
it is to process with the setAuthor message.

The AuthorBookEdit component displays the books associated with the author by
iterating through the books relationship of author (an NSMutableArray) in the
WORepetition. When the user clicks Add, the addBook method creates a new Book
object and adds it to the books relationship of author and the editing context.
Similarly, when the user clicks Delete on a book in the list, the book is removed from
the books relationship and deleted from the editing context. When the user is done
editing the books of the author, she clicks Done to return to the Main page.

Deleting Authors

When the user deletes an author, she doesn’t get a warning telling her that all the
books related to that author are going to be deleted as well. In this section, you’ll
add a component that displays such a warning.

Though conceptually more complex, the design and implementation of the logic for
deleting authors is just as simple as that for books. The only significant difference is
that the application asks the user for confirmation before deleting the author,
because this action has the side effect of removing additional objects from the object
store that the user may not be aware of.

You’ll add a component that displays the author that the user wants to delete, along
with all related books, and asks for confirmation. If the user changes her mind, she’ll
be returned to the Main component. If the user clicks Delete, the author and related
books are deleted from the editing context (the actual delete transaction takes place
when the user clicks Save on the Main page).

190 Deleting Authors
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

Create the ConfirmAuthorDelete Component

1. Add a new component and name it ConfirmAuthorDelete.

(See “Defining a New Component” (page 84) for details.)

2. Open ConfirmAuthorDelete.wo in WebObjects Builder.

3. Add the following instance variables:

a. author (Author), with accessor methods

b. bookItem (Book), without accessor methods

4. Add the following actions:

a. cancel (Main)

b. deleteAuthor (Main)

5. Edit the component’s content so that it looks similar to Figure 12-6 and make the
necessary bindings.

C H A P T E R 1 2

Working With Relationships

Deleting Authors 191
  Apple Computer, Inc. May 2001

Figure 12-6 ConfirmAuthorDelete.wo

6. Save ConfirmAuthorDelete.wo.

Edit ConfirmAuthorDelete.java
Edit the deleteAuthor method so that it looks like Listing 12-15.

Listing 12-15 The deleteAuthor method in ConfirmAuthorDelete.java

public Main deleteAuthor() {

 Main nextPage = (Main)pageWithName("Main");

192 Deleting Authors
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

// get session

Session session = (Session)session();

 session.deleteAuthor(author);

 return nextPage;

}

Modify the Main Component
The Main component needs to display the ConfirmAuthorDelete component when
its deleteAuthor action is invoked. You accomplish that by modifying the
deleteAuthor method in Main.java so that it looks like Listing 12-16.

Listing 12-16 The deleteAuthor method in Main.java—returns ConfirmAuthorDelete
component

public ConfirmAuthorDelete deleteAuthor() {

 ConfirmAuthorDelete nextPage =

(ConfirmAuthorDelete)pageWithName("ConfirmAuthorDelete");

 nextPage.setAuthor(authorItem);

 return nextPage;

}

Run the Application
Build and run the application. Create a new author, add several books, and save
your changes. (You can use EOModeler to browse the tables’s contents and confirm
that the new information has been added to the database.) Click Delete on the newly
added author. You should be presented with a confirmation page similar to Figure
12-7.

C H A P T E R 1 2

Working With Relationships

Sorting a Fetch 193
  Apple Computer, Inc. May 2001

Figure 12-7 The ConfirmAuthorDelete component in action

If you click Cancel, you are simply returned to the Main page. Clicking Delete
causes the deleteAuthor method in ConfirmAuthorDelete.java to be invoked. In
turn, it invokes the session’s deleteAuthor method, which removes the author from
the authorList array and adds it to the editing context’s list of enterprise objects to
delete.

Sorting a Fetch

Fetch specifications can be created either programmatically or created with
EOModeler and stored in the model file. Up to this point you have use a simple
fetch specification, returning an unsorted list of enterprise objects. Now, you’ll
create a more elaborate fetch specification with EOModeler and save it in the model
file. You’ll see how EOModeler’s graphical user interface makes it easy to develop
fetch specifications.

First, you’ll define the new fetch specification on the Author entity. Then, you’ll
amend the code in Session.java to use the new fetch specification. Finally, you’ll
use in-memory sorting to keep the list sorted even after you add new authors.

194 Sorting a Fetch
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

In “Further Exploration” (page 148), you were given the opportunity to sort the list
of authors during the fetch. If you did so, you probably noticed that once you added
new authors to the list, the list didn’t stay sorted. You can use Enterprise Objects’s
sorting mechanism on a previously fetched array of enterprise objects, as well as
during a fetch.

In this section you’ll add a new method to Session.java, sortAuthorList, which
sorts the authorList array. You’ll also modify the addAuthor method in Main.java to
call the sortAuthorList method to re-sort the authorList array each time an author
is added.

1. Add the sortAuthorList method, shown in Listing 12-17, to Session.java.

Listing 12-17 The sortAuthorList method in Session.java

public void sortAuthorList() {

// create array to store sort orderings

NSMutableArray sortOrderings = new NSMutableArray();

// create sort ordering

EOSortOrdering sortOrdering1 = new EOSortOrdering("lastName",

EOSortOrdering.CompareAscending);

// add sort ordering to orderings array

sortOrderings.addObject(sortOrdering1);

// sort authorList using orderings

EOSortOrdering.sortArrayUsingKeyOrderArray(authorList,

sortOrderings);

}

2. Edit the addAuthor method in Session.java to sort the list after adding a new
author to it.

Add the following code after the line that adds a new author to the list:

// sort list

sortAuthorList();

Sorting is performed in this section of the code because if the list remains
unchanged, there is no need to sort it.

C H A P T E R 1 2

Working With Relationships

Sorting a Fetch 195
  Apple Computer, Inc. May 2001

Build and run the application. You’ll find that the author list is sorted after you add
a new author.

196 Sorting a Fetch
  Apple Computer, Inc. May 2001

C H A P T E R 1 2

Working With Relationships

197
  Apple Computer, Inc. May 2001

13 Glossary

adaptor, database A mechanism that
connects your application to a particular
database server. For each type of server you
use, you need a separate adaptor.
WebObjects provides an adaptor for
databases conforming to JDBC.

adaptor, WebObjects A process (or a part
of one) that connects WebObjects
applications to an HTTP server.

application object An object (of the
WOApplication class) that represents a
single instance of a WebObjects application.
The application object’s main role is to
coordinate the handling of HTTP requests,
but it can also maintain application-wide
state information.

attribute In Entity-Relationship modeling,
an identifiable characteristic of an entity. For
example, lastName can be an attribute of an
Employee entity. An attribute typically
corresponds to a column in a database table.
See also entity; relationship.

business logic The rules associated with
the data in a database that typically encode
business policies. An example is
automatically adding late fees for overdue
items.

CGI A standard for communication
between external applications and
information servers, such as HTTP or Web
servers. Short for Common Gateway
Interface.

class In object-oriented languages such as
Java, a prototype for a particular kind of
object. A class definition declares instance
variables and defines methods for all
members of the class. Objects that have the
same types of instance variables and have
access to the same methods belong to the
same class.

class property An instance variable in an
enterprise object that meets two criteria: it’s
based on an attribute in your model, and it
can be fetched from the database. A class
property can be an attribute, a relationship, a
method, or an instance variable.

column In a relational database, the
dimension of a table that holds values for a
particular attribute. For example, a table that
contains employee records might have a
LAST_NAME column that contains the
values for each employee’s last name. See
also attribute.

component An object (of the
WOComponent class) that represents a Web
page or a reusable portion of one.

G L O S S A R Y

198
  Apple Computer, Inc. May 2001

context An object that encapsulates state
information for a given transaction (one cycle
of the request-response loop). Context objects
are implemented with the WOContext class.
They encapsulate information about the
URL, context ID, application, session,
component, request, and response items.
WebObjects maintains a cache of WOContext
objects to support the back function of Web
browsers. See also request-response loop.

cookie General mechanism used by Web
servers to store and retrieve persistent data
on a client system (Web browser). The
information stored is usually state data
associated with a range of URLs.

database server A data storage and
retrieval system. Database servers typically
run on a dedicated computer and are
accessed by client applications over a
network.

delete rule A delete rule specifies the action
to take when the source object of a
relationship is deleted from the data store.
The possible actions are nullify, cascade,
deny, and none. Delete rules are defined in
model files with the EOModeler application.
See also relationship.

display group A display group collects an
array of objects from a data source, sorts it
and displays data from the objects in the user
interface. See also EODisplayGroup;
WODisplayGroup.

dynamic element A dynamic version of an
HTML element. WebObjects includes a list of
dynamic elements with which you can build
your component.

enterprise object A Java object that
conforms to the key-value coding protocol
and whose properties (instance data) can
map to stored data. An enterprise object
brings together stored data with methods for
operating on that data. See also key-value
coding; property.

entity In Entity-Relationship modeling, a
distinguishable object about which data is
kept. For example, you can have an
Employee entity with attributes such as
lastName, firstName, address, and so on. An
entity typically corresponds to a table in a
relational database; an entity’s attributes, in
turn, correspond to a table’s columns. See
also attribute; table.

Entity-Relationship modeling A
Discipline for examining and representing
the components and interrelationships in a
database system. Also known as E-R
modeling, this discipline factors a database
system into entities, attributes, and
relationships.

EODisplayGroup A display group that
displays data in J2SE or Cocoa interface
elements using EOAssociations. See also
display group.

EOModeler A tool used to create and edit
models.

fetch In Enterprise Objects applications, to
retrieve data from the database server into
the client application, usually into enterprise
objects.

foreign key An attribute in an entity that
gives it access to rows in another entity. This
attribute must be the primary key of the

G L O S S A R Y

199
  Apple Computer, Inc. May 2001

related entity. For example, an Employee
entity can contain the foreign key deptID,
which matches the primary key in the entity
Department. You can then use deptID as the
source attribute in Employee and as the
destination attribute in Department to form a
relationship between the entities. See also
primary key; relationship.

HTML-based application approach A
WebObjects development approach that
allows you to create HTML-based Web
applications.

inheritance In object-oriented
programming, the ability of a superclass to
pass its characteristics (methods and instance
variables) on to its subclasses.

instance In object-oriented languages such
as Java, an object that belongs to (is a member
of) a particular class. Instances are created at
runtime according to the specification in the
class definition.

Java Browser A tool used to peruse Java
APIs and class hierarchies.

Java Foundation Classes A set of graphical
user interface components and services
written in Java. The component set is known
as Swing.

JDBC Stands for “Java Database
Connectivity.” An interface between Java
platforms and databases.

key An arbitrary value (usually a string)
used to locate a datum in a data structure
such as a dictionary.

key-value coding The mechanism that
allows the properties in enterprise objects to
be accessed by name (that is, as key-value
pairs) by other parts of the application.

key-value pair See key-value coding.

locking A mechanism to ensure that data
isn’t modified by more than one user at a
time and that data isn’t read as it is being
modified.

many-to-many relationship A relationship
in which each record in the source entity may
correspond to more than one record in the
destination entity, and each record in the
destination may correspond to more than
one record in the source. For example, an
employee can work on many projects, and a
project can be staffed by many employees.
See also relationship.

method In object-oriented programming, a
procedure that can be executed by an object.

model An object (of the EOModel class)
that defines, in Entity-Relationship terms, the
mapping between enterprise object classes
and the database schema. This definition is
typically stored in a file created with the
EOModeler application. A model also
includes the information needed to connect
to a particular database server.

object A programming unit that groups
together a data structure (instance variables)
and the operations (methods) that can use or
affect that data. Objects are the principal
building blocks of object-oriented programs.

G L O S S A R Y

200
  Apple Computer, Inc. May 2001

primary key An attribute in an entity that
uniquely identifies rows of that entity. For
example, the Employee entity can contain an
EmpID attribute that uniquely identifies each
employee.

Project Builder A tool used to manage the
development of a WebObjects application or
framework.

property In Entity-Relationship modeling,
an attribute or relationship. See also
attribute; relationship.

record The set of values that describes a
single instance of an entity; in a relational
database, a record is equivalent to a row.

relational database A database designed
according to the relational model, which uses
the discipline of Entity-Relationship
modeling and the data design standards
called normal forms.

relationship A link between two entities
that’s based on attributes of the entities. For
example, the Department and Employee
entities can have a relationship based on the
deptID attribute as a foreign key in Employee
and as the primary key in Department (note
that although the join attribute deptID is the
same for the source and destination entities
in this example, it doesn’t have to be). This
relationship would make it possible to find
the employees for a given department. See
also foreign key: many-to-many
relationship; primary key; to-many
relationship; to-one relationship.

reusable component A component that can
be nested within other components and acts
like a dynamic element. Reusable

components allow you to extend the
WebObject’s selection of dynamically
generated HTML elements.

request A message conforming to the
Hypertext Transfer Protocol (HTTP) sent
from the user’s Web browser to a Web server
that asks for a resource like a Web page. See
also response.

request-response loop The main loop of a
WebObjects application that receives a
request, responds to it, and awaits the next
request.

response A message conforming to the
Hypertext Transfer Protocol (HTTP) sent
from the Web server to the user’s Web
browser that contains the resource specified
by the corresponding request. The response
is typically a Web page. See also request.

row In a relational database, the dimension
of a table that groups attributes into records.

rule In the Direct to Web and Direct to Java
Client approaches, a specification used to
customize the user interfaces of applications
developed with these approaches.

session A period during which access to a
WebObjects application and its resources is
granted to a particular client (typically a
browser). Also an object (of the WOSession
class) representing a session.

target A blueprint for building a product
from specified files in your project. It consists
of a list of the necessary files and
specifications on how to build them. Some

G L O S S A R Y

201
  Apple Computer, Inc. May 2001

common types of targets build frameworks,
libraries, applications, and command-line
tools

table A two-dimensional set of values
corresponding to an entity. The columns of a
table represent characteristics of the entity
and the rows represent instances of the
entity.

template In a WebObjects component, a file
containing HTML that specifies the overall
appearance of a Web page generated from
the component.

to-many relationship A relationship in
which each source record has zero to many
corresponding destination records. For
example, a department has many employees.

to-one relationship A relationship in
which each source record has exactly one
corresponding destination record. For
example, each employee has one job title.

transaction A set of actions that is treated
as a single operation.

uniquing A mechanism to ensure that,
within a given context, only one object is
associated with each row in the database.

validation A mechanism to ensure that
user-entered data lies within specified limits.

Web server An application that serves Web
pages to Web browsers using the HTTP
protocol. In WebObjects, the Web server lies
between the browser and a WebObjects
application. When the Web server receives a
request from a browser, it passes the request
to the WebObjects adaptor, which generates

a response and returns it to the Web server.
The Web server then sends the response to
the browser. See also adaptor, WebOBjects;
request-response loop.

WebObjects Builder A tool used to
graphically edit WebObjects components.

WODisplayGroup A display group that
displays data in WebObjects components.
See also display group.

G L O S S A R Y

202
  Apple Computer, Inc. May 2001

203
  Apple Computer, Inc. May 2001

Index

A

accessor methods 65, 155
action attribute 50
action method, example of adding 49
Actions pop-up menu (FileMerge) 175
adaptor level 120
adaptors 44, 54
Add Column pop-up menu (EOModeler) 133
addObject method 98
addUser method 102, 104–105
Advanced Attribute Inspector (EOModeler) 130,

167
Allows Null column (EOModeler) 134
API files of components 38
appendToResponse method 60
Application class 32
applications

creating 136–137
editing contexts in 120
as project type 29
running 105
and sessions 96

arrays 97–101
AuthorBookEdit component 178–182
Authors application 123–148

custom objects in 151–163
database editing in 123–149
relationships in 165–195

awake method 58–59

B

Back button 61
backtracking cache 61
blob (Binary Large Object) type 135

C

cache, backtracking 61
Cascade delete rule 172
char type 135
class properties 134
Class Property column (EOModeler) 134
Classes group (Project Builder) 32
client-server applications 23
Column column (EOModeler) 134
columns in databases 109
component action request processing 55
components

See also Main component
counting number of loads 48
defined 19
example of adding 84–90
example of modifying 33, 39–43
maintaining state in 46–51, 95–107
parts of 38
sharing data between 77–94

condition attribute 68
conditional display of elements 68–71
ConfirmAuthorDelete component 190
cookies 23
count method 98
custom classes 78–83, 151–155
custom logic 158–162

D

Data Browser (EOModeler) 147
database level 121
databases 109–113

accessing 18
browsing in EOModeler 147
columns in 109

I N D E X

204
  Apple Computer, Inc. May 2001

databases (continued)
connecting to 121
creating 124
foreign keys in 112
legacy 120
not-null columns in 111
preferred protocol of 116
primary keys in 110
querying languages for 115
relationships in 111–113
rows in 110
structure of 109–111
tables in 109
translating data 121
uniquing in 110
updates to 121

date type 135
DateDisplay application 39
datetime type 135
default values of properties, setting 163
Definition column (EOModeler) 134
delete rules 172
deleteObject method 143
Deny delete rule 172
derived properties 72–75, 160–161
developer resources 16
development tools 23–25
dictionaries 116, 120
direct action request processing 55
DirectAction class 32
display groups 38
Documentation group (Project Builder) 32
double type 135
dynamic publishing 20–22, 37–52

E

Edit Source menu (WebObjects Builder) 47, 69
editing contexts 116, 123–149
encapsulation of data

benefits of 106
custom objects and 77–83

Enterprise Object technology 115–121

enterprise objects 115–121
entities, adding to a model 128–132
Entity Inspector (EOModeler) 128
EOAccess layer 120–121
EOControl layer 119–120
EOFetchSpecification class 142, 148–149
EOGenericRecord class 118, 142, 155, 160
EOKeyValueCoding interface 118–119
EOModeler application

browsing tables with 147
creating fetch specifications 193
generated code 154
introduced 24
main window 133
opening 125

EOSortOrdering class 148
External Type column (EOModeler) 134–135

F

features of WebObjects 18–23
fetch specifications 142, 148–149, 193–195
FileMerge application 174–176
foreign keys 112, 135
frameworks 29
Frameworks group (Project Builder) 32

G

Groups & Files pane (Project Builder) 32

H

HTML files of components
defined 38
editing 46
reading 45
relationship to WOD files 43

HTML input elements 53, 62

I N D E X

205
  Apple Computer, Inc. May 2001

I

in-memory sorting 194–195
input elements 53, 62
int type 135
invokeAction method 59
item attribute 101, 104

J

Java Browser 98, 148
Java class files of components 32
Java classes

accessor methods in 155
adding to project 78, 152
generating from model entity 151
in JAR files 34

Java files of components 38, 46
Java Number class 135
Java String class 135
JavaWebObjects framework 32
JDBC (Java Database Connectivity) standard 120
JDBC adaptor 126, 135
JDBC driver 126

K

keypaths 83, 97, 158
key-value coding 119, 155
key-value dictionaries 120

L

legacy databases 120
list attribute 101
loadCount variable 48
Locking column (EOModeler) 134
long type 135

M

Main component 39–43
Main subgroup (Project Builder) 32
models 24, 121
multiple users 96

N

Name column (EOModeler) 134
negate attribute 68
New Project Assistant 28–30
No action delete rule 172
not-null columns in databases 111
NSArray class 97–98
NSData object 135
NSMutableArray class 97–101
Nullify delete rule 172

O

object orientation 19
objectAtIndex method 98
OODBS (object-oriented databases) 14
OpenBase Manager 124

P, Q

page cache 61
Precision column (EOModeler) 134
Primary Key column (EOModeler) 133
primary keys 110, 135
Products group (Project Builder) 32
Project Builder

getting started with 27–35
introduced 24
location of 28
main window 31–33
running applications 44

I N D E X

206
  Apple Computer, Inc. May 2001

Project Builder Assistant. See New Project
Assistant

projects
choosing type of 29
components of 32
creating a simple one 27–30
location for 30

properties of enterprise objects 118
class properties 134
default values for 163

Prototype column (EOModeler) 134

R

Read Only column (EOModeler) 134
Refetch button (EOModeler) 147
relationships in databases

data deletion and 171–173, 189–193
and database design 111–113
example of creating 165–195
Java in code 173–188

release notes, displayed in Project Builder 31
removeObjectAtIndex method 98
request processing 54–61

backtracking cache 61
generating the response 60–61
models for 55
request-response loop and 55
stages of 58–59

request-response loop
introduced 37
overview 55
phases of 56
response generation and 44–45
tracing 65–68

Resources group (Project Builder) 32
response generation 44–45
response page 54, 60
revertChanges method 145
rows in databases 110
Run pane (Project Builder) 34, 51

S

saveChanges method 144
scalability in WebObjects 18
Scale column (EOModeler) 135
Session class

adding arrays to 98–101
as default class in application 32

session method 97
sessions (Session objects)

creating new instances 51
overview of 96
using to manage state 95–105

setUser method 104
sleep method 60
sorting

and fetch specifications 193–195
specifying order 148

state management 46–52, 95–107
static binding 45
submit button 63, 67–68
submitChanges method 94, 104

T

tables
creating 135
in databases 109

takeValuesFromRequest method 59
to-many relationships 113, 170, 177
tools 23–25
to-one relationships 112, 170, 177

U

uniquing 110
user input

and derived properties 72–75
introduced 22
managing 53–75
and request processing 54–61

I N D E X

207
  Apple Computer, Inc. May 2001

user interface of 62–65
userEdit action 94
UserEdit component 84–94, 103
UserEntry project 78
users (User objects)

adding 102, 104
deleting 101, 105
editing 103
multiple 96
sessions for 96

V

Value Class (Java) column (EOModeler) 134
Value Type column (EOModeler) 135

W, X, Y, Z

web browser cache 61
Web Components group (Project Builder) 32, 38
Web Server Resources group (Project Builder) 32
WebObjects adaptor 44, 54
WebObjects Application project type 29
WebObjects Builder

adding arrays to Session class 98
introduced 24
introduction to using 33
main window 41

WebObjects Framework project type 29
Width column (EOModeler) 134
WOComponent class 19, 38

See also components
WOConditional elements 68–71, 91
WOD files

introduced 38
merging 45
relationship to HTML files 43

WOElement class 39
WOHyperlink elements 101–102, 107
WOO files 38
WORepetition elements 101, 146

WOString Binding Inspector 41
WOString elements 40–43
WOStrings 53, 159
WOTextFields 82
Write Format column (EOModeler) 135

I N D E X

208
  Apple Computer, Inc. May 2001

	Discovering WebObjects for HTML
	Contents
	Figures, Listings, and Tables
	About This Book
	Why Read This Book
	Assumptions
	Further Reading

	Introduction to WebObjects
	WebObjects Features
	Database Access and Independence
	Scalability
	Object Orientation
	Dynamic Publishing
	User Input
	Client-Server Applications

	Development Tools
	Project Builder
	WebObjects Builder
	EOModeler

	Your First Project
	Project Builder
	Hello WebObjects
	Launch Project Builder
	Using the New Project Assistant
	The Main Window
	Modifying the Main Component
	Building the Project
	Running the Project

	Developing Dynamic Content
	Components and Classes
	The Main Component
	Adding Java methods
	Adding a WOString

	HTML and WOD Files
	Build and Run the Application
	Response Generation
	Maintaining State in the Component
	Adding the Variable to Count Method Calls
	Displaying the Count
	Increasing the Variable’s Value
	Refreshing the Page
	The Counter in Action

	Further Exploration

	Managing User Input
	Request Processing
	Processing the Request
	Generating the Response
	Backtracking Cache

	User Interface
	Tracing the Request-Response Loop
	Conditional Display With WOConditional Elements
	Derived Properties

	Component Communication
	Custom Objects
	Duplicating the UserEntry Project
	Adding the Custom Class
	Following a Keypath

	Defining a New Component
	Modifying the Main component
	Running the Application

	Using the Session to Manage State
	The Session
	Displaying and Editing Lists of Objects
	The NSArray and NSMutableArray Classes
	NSArray
	NSMutableArray

	Adding the
	Adding the WORepetition to Main
	Editing the Users
	Adding Users
	Deleting Users

	Running the Application
	Benefits of Encapsulation
	Further Exploration

	Database Basics
	Database Structure
	Tables
	Rows
	Uniquing
	Not Null

	Relationship
	To-One Relationships
	To-Many Relationships

	Introduction to Enterprise Objects
	System Architecture
	WebObjects Interaction
	Enterprise Objects
	EOControl
	The Object Graph
	The Editing Context

	EOAccess
	The Adaptor Level
	The Database Level

	The Model

	Working With Editing Contexts
	The
	Creating the Authors Database
	Creating the Authors Model
	Adding the Author Entity to the Model
	The EOModeler Window
	Creating the AUTHOR Table

	Creating the Application
	Customizing the Main component
	Customizing Main.wo
	Customizing Main.java

	Running the Authors Application
	Browsing the Database

	Further Exploration

	Using Custom Objects
	Generating a Custom Class
	Generating a Java Class From a Model Entity
	Adding a Java Class to the Project

	Modifying the Authors Project
	Adding Custom Logic
	Using Custom Logic
	Setting Default Values

	Working With Relationships
	Completing the Authors Model
	Define the Book Entity
	Create the BOOK Table
	Define the Model’s Relationships
	What Are Delete Rules?
	Delete Rules in the Authors Model

	Using Relationships in Your Code
	Add Java Classes for Author and Book to the Project
	To-One Relationships in Java
	To-Many Relationships in Java

	Create the AuthorBookEdit Component
	AuthorBookEdit.wo
	AuthorBookEdit.java

	Modify Session.java
	Modify the Main Component
	Main.wo
	Main.java

	Running the Application
	Deleting Authors
	Create the ConfirmAuthorDelete Component
	Edit ConfirmAuthorDelete.java
	Modify the Main Component
	Run the Application

	Sorting a Fetch

	Glossary
	Index

