

C H A P T E R 1

1 Using the JavaConverter
The JavaConverter is a command line tool that performs automatic conversion of
any Objective-C or WebScript source code to pure Java code. This can be done file
by file or at the project level for any WebObjects 4.5 application or framework. The
JavaConverter runs under Mac OS X Server 1.2 and Windows NT.

JavaConverter Features

The JavaConverter is robust:

� It only works on a copy of your WebObjects project; the original is never
touched. (When processing an individual file, the original can get overwritten;
always create a copy of your project before processing individual files.)

� It deals with categories either by creating helper classes or by merging them
throughout subprojects. You will need to manually correct the calls to these
categories after the automatic conversion has been performed.

� It preserves comments and generates clean, easy to read Java code. Any
problems encountered by the parser are highlighted with a searchable comment
(tagged JC_ERROR, JC_WARNING, or JC_INFO, depending on the severity of the
problem).

� To the greatest extent possible, it fixes WebScript weak type references.

� If the parser ever crashes while attempting to process a particular Objective-C
construct, an exception is raised indicating at which line the error occurred, after
which parsing continues.
JavaConverter Features 1

C H A P T E R 1

Using the JavaConverter

� In the event that the parser crashes, you can fix the original source and re-parse
the problem files one at a time.

� This release of the JavaConverter has been tested against all of our major
Objective-C frameworks (WebObjects, EOControl, EOAccess).

The JavaConverter is extensible simply by dropping tops scripts into designated
directories (these are all located in the /Library/WebObjects/Java/Conversion
directory):

� PreScriptsObjCWos: tops scripts executed on every .c, .m, or .wos file before
their conversion.

� PostScriptsBridgedJavaToPure: tops scripts executed on every .java file after
their conversion (unless -toBridgedJava is specified).

� PostScriptsD2WModelToPure: tops scripts executed on every .d2wmodel file
after their conversion (unless -toBridgedJava is specified).

� PostScriptsWodToPure: tops scripts executed on every .wod file after their
conversion (unless -toBridgedJava is specified).

� PostScriptsObjCWosToPure: tops scripts executed on every .c, .m, or .wos file
after their conversion (unless -toBridgedJava is specified).

� PostScriptsAllToPure: tops scripts executed on every .c, .m, .wos, or .java file
after their conversion (unless -toBridgedJava is specified), after all other scripts.

� PostScriptsObjCWosToBridged: tops scripts executed on every .c, .m, or .wos
file after their conversion (only if -toBridgedJava is specified).

Note the following:

� Within each of the above directories, scripts are run in alphabetical order.

� The order in which replace commands are executed by tops is important. Do not
move them around in the scripts provided with JavaConverter.

� The tops man pages have more information about tops scripts.

It’s important to understand that although the JavaConverter does the majority of
the work needed to convert your code, it does not—in fact, cannot—perform a
complete conversion. Thus, the converted code will not compile until you have
reviewed it and made a number of manual adjustments.
2 JavaConverter Features

C H A P T E R 1

Using the JavaConverter

Format Hints to the Cross-Compiler
The JavaConverter is savvy enough to recognize some printing methods that take
formatting information and at least partially convert them into Java. For instance,
if in your original code you had something like

fprintf(stderr, “%s has visited this site %d times.”, userName, userHitCount
);

the JavaConverter would recognize the fprintf call and would generate

System.err.println(userName + “ has visited this site “ + userHitCount + “
times.”);

Clearly, some tidying up may still be needed, but the chore of cleaning up the
formatting is completed for you. The JavaConverter can only do these conversions
if it recognizes the method names (printf, fprintf, stringWithFormat, and NSLog, for
example). If, however, you implement a method named superLog, for example, that
takes style formatting arguments like printf does, it would be very convenient to
have the JavaConverter appropriately convert uses of this method as well. In order
to render your methods visible to the JavaConverter (for the purpose of having the
style formatting conversions performed), you can have a tops script located in the
PreScriptsObjCWos directory that has a replace line to convert instances of superLog
to superLog_formatted. The extra “_formatted” is picked up during conversion and
the following:

superLog_formatted(“%d transactions processed.”, transactionCount);

would, after conversion, become

superLog(transactionCount + “ transactions processed.”);

Note that the JavaConverter also removes the “_formatted” part of the method
name for you automatically. Additionally, if the streams involved in these calls
apply to stderr or stdout, they will be converted into calls to System.err.println
and System.out.println, respectively. However, if, for example, an fprintf stream
is attached to something different, you would see the following error message:

JC_ERROR - Unable to convert fprintf() as it applies to an unrecognized stream
(neither stdout or stderr).
JavaConverter Features 3

C H A P T E R 1

Using the JavaConverter

Limitations

Naming Booleans

The JavaConverter may incorrectly translate the Objective-C code

BOOL firstTime = YES;
...
if(firstTime)

into the Java code

boolean firstTime = true;
...
if(firstTime != null) // “if(!firstTime)” is desired

Note that this translation is not the desired one. JavaConverter does not recognize
the types of variables and will treat each of them as an Object.

More on Conditionals

In Objective-C, the following makes sense and is something of a time-saver:

if(![value length])

However, the precise meaning of this conditional is somewhat ambiguous and
might be

1. if([value length] == 0) // int, but could be double, float, and so on

2. if([value length] == nil)

3. if([value length] == NULL)

4. if([value length] == FALSE)

Regardless, a translation cannot be performed correctly for all of the cases, as the
type returned by the length method cannot simply be assumed. The default
behavior for the JavaConverter in this case is to generate the code

if(value.length() == null)
4 JavaConverter Features

C H A P T E R 1

Using the JavaConverter

This correctly covers cases 2 and 3; additionally, case 4 could be handled by naming
the methods beginning with “is”, “are”, “was”, “were”, “has”, “have”, “equals”,
“does”, “ends”, “starts”, or “bool”. Case 1 cannot be handled properly by the
JavaConverter.

Messages to nil

While Objective-C allows for messages sent to nil (which are simply ignored),
Java’s typing and lack of messaging thoroughly disallow behavior like this:
methods called on null-valued variables of nonprimitive types always raise
NullPointerExceptions in Java. The JavaConverter has no mechanism by which to
positively identify when messages in Objective-C code raise NullPointerExceptions
after conversion to Java — in any case, frequently this is simply an issue discovered
at runtime. Please be aware of this conversion issue and attend to your converted
Java code accordingly.

Format Hints to the Cross-Compiler

The JavaConverter has the following limitations:

Due to the fact that certain language conventions available in Objective-C do not
translate well (or at all) into Java, there are limitations to the JavaConverter’s
abilities. Some of these sticking points can be gotten around or somehow avoided
and others cannot. A few issues to keep in mind about the translation process are
listed below:

� C code parsing is handled correctly, but this is not a C-to-Java converter.
Structures are essentially converted to Object, but pointers to functions and
other C constructions that make no sense in Objective-C are ignored.

� C libraries, C functions, UNIX functions, MFC (Microsoft Foundation Class)
functions, Objective-C runtime functions, and embedded assembly code in
Objective-C are not converted.

� Java is a strongly typed language, and moving from a less strongly typed
language to Java is bound to lead to uncertainties. At this point, the converter is
not able to do type introspection to resolve unknown types. Some types may be
omitted when Java requires them, and some checks for null value may be
missing in the Java classes after conversion. Specifically, when the
JavaConverter converts if([receiver method:target]) to
JavaConverter Features 5

C H A P T E R 1

Using the JavaConverter
if(receiver.method(target)!=null), any method whose name starts with “is”, “are”,
“was”, “were”, “has”, “have”, “had”, “equals”, “does”, “ends”, “starts”, or “bool” is
assumed to return a boolean.

� The @asm and @defs constructs aren’t handled. All other @ constructs, however, are.

� The converter does not preserve the original indentation of the code and may move
comments from one line to another.

� The converter cannot analyze the code with much depth and thus works best with
straightforward code.

Running the JavaConverter

You should only run the JavaConverter on projects or files that successfully compile under
WebObjects 4.5.

On Mac OS X Server 1.2, go to the JavaConverter.woa directory and invoke the converter
as follows:

./JavaConverter [-toBridgedJava] [-header file-containing-headers] [-cppFlags
file-containing-cpp-flags] project-directory | Objective-C-source-file |
bridged-Java-source-file | WebScript-file

On Windows NT, go to the JavaConverter.woa directory and invoke the converter as
follows:

./JavaConverter.cmd [-toBridgedJava] [-header file-containing-headers] [-cppFlags
file-containing-cpp-flags] project-directory | Objective-C-source-file |
bridged-Java-source-file| WebScript-file

In both of the above, project-directory is the path to a WebObjects project directory (the
directory that contains the PB.project file).

On Mac OS X perform the following steps:

1. Start Project Builder.

The Project Builder application is located in the /System/Developer/Applications
directory.
6 Running the JavaConverter

C H A P T E R 1

Using the JavaConverter
2. Choose File > Import Project.

3. Select Import PB.project in the Project Import Assistant window and click Next.

4. Enter the necessary project information and click Finish.

Project Builder automatically creates your new project.

The -toBridgedJava flag indicates whether you want to stop the conversion at the
bridged Java stage. At this stage, the code can still execute on WebObjects 4.5.

The -header command line option lets you specify the name of a file that contains
extra comments, package specifications, or import information that you want to add
to each source file that gets converted. An example file might be:

/* Copyright Apple Computer, 2000 – owner fjouaux */
package com.webobjects.javaconverter;
import com.webobjects.foundation.*;

The -cppFlags command line option lets you specify the name of a file containing
extra arguments that the JavaConverter passes to the cpp preprocessor when
converting Objective-C source files. Be sure to specify these arguments on a single
line in the file. See the man pages for cpp for a list of valid preprocessor flags.

When you invoke the JavaConverter on a project, it does all of its work in a copy of
the specified project; the original is not touched. When it is first invoked on a
WebObjects project, the JavaConverter copies the entire project directory to a
parallel directory named after the original with the word “Java” appended. Thus, if
you run the JavaConverter on the LocalizedHelloWorld example, the
JavaConverter first copies the entire project to “LocalizedHelloWorldJava”. Then it

� scans the LocalizedHelloWorldJava directory and read the PB.project file

� updates the PB.project file

� runs the various tops scripts in the PreScriptsObjCWos directory

� scans each .h file, each .m file, and each .wos file

� generates a set of .java files, one for each .h/.m pair and one for each .wos file

� runs the various tops scripts in the PostScriptsObjCWosToBridged directory
Running the JavaConverter 7

C H A P T E R 1

Using the JavaConverter
When the JavaConverter is invoked on a single source file, instead of making a copy
of the entire project, it creates a ppFiles directory within the project and does its
work there. The resulting .java file, however, appears in the project alongside the
original .h/.m or .wos file. If you are converting a single bridged Java file to pure
Java, the converted file appears in a directory called .pureJava.

W A R N I N G
The JavaConverter will overwrite a preexisting .java file if its
name corresponds to an existing .h/.m or .wos file. For
instance, if your project contains both Foo.m and Foo.java,
when you run the JavaConverter on Foo.m it will overwrite
Foo.java.

W A R N I N G
The JavaConverter may fail silently if it cannot parse the
source code. Always make sure that your code compiles
under WebObjects 4.5 before you convert it.

Regenerating the Project Makefile
Because the source files have changed (from Objective-C to Java, say), the makefile
is no longer applicable. As part of its work when processing an entire WebObjects
project, the JavaConverter deletes the makefile in the copy of the project directory
being processed. After the JavaConverter is done, you’ll need to have ProjectBuilder
create a new makefile for the project. Here’s how to do this on Mac OS X Server 1.2:

1. Using Project Builder, open the PB.project file in the Java project directory.

2. Select Classes. In the classes list, Control-drag one of the .java files to a different
location in the list (this changes the build order, indicating to ProjectBuilder that
the makefile needs to be regenerated).

3. Save the project.

4. Perform a “make clean”.

On Windows NT, the following procedure will cause Project Builder to generate a
new makefile:

1. Using Project Builder, open the PB.project file in the Java project directory.

2. Select any project file and remove it from the project (only—don’t remove it
from the disk!).
8 Running the JavaConverter

C H A P T E R 1

Using the JavaConverter
3. Add the file deleted in the previous step back into the project.

4. Save the project.

5. Perform a “make clean”.

After Conversion
Once the JavaConverter has done its work, you’ll need to inspect the generated Java
source code and make manual adjustments in order to get the code to compile.
Simply attempting to compile the resulting code is one way to quickly pinpoint
many problem areas. It is also important to browse through the generated code and
look for comments tagged JC_ERROR, JC_WARNING, or JC_INFO; these messages indicate
areas where the JavaConverter may have had difficulty determining exactly what
to generate.

Dealing With Errors
In normal operation, the JavaConverter sends messages similar to the following to
the terminal window:

JavaConverter /tmp/PitSaw
Reading MacOSXServerClassPath.txt ...
Launching JavaConverter ...
java -classpath “/tmp/JavaConverter/Resources/Java/javaconverter.zip:/
System/
Library/Frameworks/JavaVM.framework/Classes/classes.jar” Application
-toBridgedJava /tmp/PitSaw
*********** JavaConverter To Bridged Java Only ***********
JavaConverter Version 0.9: Copied Project directory to: /tmp/PitSawJava
JavaConverter Version 0.9: Converting file: /tmp/PitSaw/PB.project
JavaConverter Version 0.9: Converting file: /tmp/PitSawJava/Application.h
Preprocessed file is ‘/tmp/PitSawJava/ppFiles/Application.h’
There were at least 0 errors during parsing & porting.

Occasionally, while running the JavaConverter on a file or project, it may suddenly
output a long backtrace in the terminal. This indicates that the parser failed to
entirely convert the current file. Although the JavaConverter’s parser has been
made as reliable as possible, we cannot anticipate all possible source code
constructs which may be in use. Such problem files will be converted only to the
Running the JavaConverter 9

C H A P T E R 1

Using the JavaConverter
point where the failure occurred. All other files will be converted independently of
this error (if you are converting a project). You can then fix each problem file and
reconvert just those files.

To guide you in identifying the source of conversion problems, should save the
output log of your conversion. This can be accomplished by adding an
output-redirection command to the end of the converter’s launch arguments; on a
Unix-based platform this addition would be something like | tee $HOME/java.log
and on a Windows platform this addition would be like | tee %HOME%\java.log (of
course, any valid path may be specified). Note that on Windows the
JavaConverter.cmd executable opens a new window without a scrollbar that closes
at the end of the conversion process — redirecting the output log to a file is
especially helpful in this case. In the event of an error, if you scroll through this log,
before the backtrace there is a statement that ends “Encountered errors during
parse”. Above this statement is a line that tells you which file was being converted
(note that this is not the original file, but a preprocessed file under a ‘ppFiles’
directory). For example, here is a portion of a JavaConverter output log:

JavaConverter Version 0.9: Converting file:
/tmp/JavaConverter/Test.m
Preprocessed file is
‘/tmp/JavaConverter/ppFiles/Test.m’

JavaConverter Version 0.9: Encountered errors during parse.
com.webobjects.javaconverter.ParseException: Encountered “{“ at line 60,
column 30.
Was expecting one of:

When investigating the source of the error, be sure to check the version of the file in
the ppFiles directory—the line and column numbers aren’t likely to indicate the
correct spot in the original source file. When altering your source code in an attempt
to work around the error, however, you’ll need to make your corrections in the
original source file—not the version in the ppFiles directory. Once you have made
your corrections you can again try to convert the problem files.

Typically, parsing errors come from macros that could not be resolved by the
preprocessor. This often occurs when the project being converted would not
compile on the machine because the preprocessor does not know where to find the
header files needed to resolve the macros. To specify header files, use the -cppFlags
command line option.
10 Running the JavaConverter

C H A P T E R 1

Using the JavaConverter
FileNotFoundException

When processing either a single file or an entire WebObjects project, the
JavaConverter will raise a FileNotFoundException if either the file being processed
or the project directory itself is read-only. When this error occurs during the
processing of an entire project, the original read-only source file will also remain in
the converted project directory.

To avoid this problem, make sure that the project directory and all files and
directories within it are writable. Note that there is no risk in making the files
writable since a copy of the project is made before conversion and all processing
takes place only in the copy.

Errors During WebScript Conversion

A “WEBSCRIPT FILE CONVERSION FAILED” message indicates that the
JavaConverter doesn’t understand the WebScript file’s syntax and cannot proceed.
To help you to isolate the problem code, the JavaConverter logs the exact command
it executed to convert the WebScript file. Cut and paste this command into a
terminal window to see the exact reason for the exception. Guided by the
information provided, correct the WebScript file and restart the JavaConverter.

Failures during WebScript conversion are extremely rare (assuming that your
WebScript file is legal). There is currently only one known WebScript construct that
can bring about such a failure: an inlined array or dictionary definition. For
example, the following will cause the JavaConverter to fail:

list = @({ "label" = "Alpha"; "value" = "A";), {...});

The addition of two additional ‘@’ characters, as shown here, will clarify things and
enable the JavaConverter to correctly interpret the code:

list = @(@{ "label" = "Alpha"; "value" = "A";), @{...});

Note: As explained in “How the JavaConverter Works” (page 12), WebScript is
first converted to “pseudo” Objective-C, which is then converted to bridged Java.
This “pseudo” Objective-C isn’t sufficient for compilation—it doesn’t invoke
autorelease or retain, for instance—and is only intended to be converted to Java.
Running the JavaConverter 11

C H A P T E R 1

Using the JavaConverter
How the JavaConverter Works

The JavaConverter contains a Java-based tool, which first duplicates the project
being converted and then—in the duplicate—works on each class and header file
found in the project and its subprojects.

The Objective-C-to-Java conversion itself is based on javacc, SUN’s parser
generator. By supplying an Objective-C grammar to this parser, we were able to
create what is essentially an Objective-C compiler that generates non-compiled Java
classes. Objective-C files are first preprocessed using the gnu preprocessor to
resolve macros and headers, then the code is parsed into a graph of objects and
regenerated in Java.

The WebScript-to-Java conversion is done in two steps. A separate Objective-C tool
based on the MultiScript framework (WebScript’s engine) parses scripted files and
generates pseudo Objective-C classes. We then feed this intermediate code to the
Objective-C-to-Java parser to generate Java classes.

Bridged Java class files are left untouched (except by the tops scripts), so the
conversion process can be run on WebObjects applications and frameworks that are
written in a mixture of Objective-C, WebScript, and bridged Java.

Finally the project is reconstructed, adding each class—and, if, necessary, new
helper classes—back to the appropriate project and subprojects.

Conversion Gotchas

Hiding Code from the JavaConverter
In some cases (for instance, if you know beforehand that a conversion may be
handled incorrectly), it can be advantageous to prevent the JavaConverter from
attempting a conversion on its own. Since comments in the original code are
preserved, commenting-out blocks of problematic code can allow you to completely
12 How the JavaConverter Works

C H A P T E R 1

Using the JavaConverter
handle the conversion on your own with pre- and post-conversion scripts. Using a
custom comment-marker (for instance, perhaps /** and **/) to shield a block from
the JavaConverter would leave a simple hook for custom tops scripts to recognize.

EOEditingContext Timestamp Datatypes
In WebObjects 4.5, EOEditingContext’s timestamp methods represented times as
doubles in units of seconds. For instance

// WebObjects 4.5 EOEditingContext timestamp-related method signatures
public static double defaultFetchTimestampLag();
public static void setDefaultFetchTimestampLag(double);
public double fetchTimestamp();
public void setFetchTimestamp(double);

However, in WebObjects 5, the analogous methods now represent times as longs in
units of milliseconds:

// WebObjects 5 EOEditingContext timestamp-related method signatures
public static long defaultFetchTimestampLag();
public static void setDefaultFetchTimestampLag(long);
public long fetchTimestamp();
public void setFetchTimestamp(long);

While the use of a double or a long with these methods allows the programmer to
discern unambiguously with which version of EOEditingContext one is dealing, the
JavaConverter has no mechanism by which to account for the three
orders-of-magnitude difference in the units of these timestamps (seconds in
WebObjects 4.5 vs. milliseconds in WebObjects 5). Therefore, it is important that
you take special care to account for the increased precision of these methods after a
conversion.
Conversion Gotchas 13

C H A P T E R 1

Using the JavaConverter
14 Conversion Gotchas

	Using the JavaConverter
	JavaConverter Features
	Format Hints to the Cross-Compiler
	Limitations
	Naming Booleans
	More on Conditionals
	Messages to nil
	Format Hints to the Cross-Compiler

	Running the JavaConverter
	Regenerating the Project Makefile
	After Conversion
	Dealing With Errors
	FileNotFoundException
	Errors During WebScript Conversion

	How the JavaConverter Works
	Conversion Gotchas
	Hiding Code from the JavaConverter
	EOEditingContext Timestamp Datatypes

