



Apple Computer, Inc.
© 2002 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc., except in the
normal use of the software or to make a
backup copy of the software or
documentation. The same proprietary
and copyright notices must be affixed to
any permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or loaned to
another person. Under the law, copying
includes translating into another
language or format. You may use the
software on any computer owned by
you, but extra copies cannot be made for
this purpose.
Printed in the United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple-labeled or Apple-licensed
computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and may
be registered in certain jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG and/or
its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, ADC will replace the
media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to ADC.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

3

© Apple Computer, Inc. July, 2002

Contents

What’s New in QuickTime 6

Using Gestalt to Get the QuickTime Version 9
Documentation and Other Resources 10
Bug Reporting 10

Installing QuickTime 6 11
Summary of Changes and Enhancements 12

Enhancements 12
Changes 15
Updates 16
For Web Developers 16

Support for MPEG-4 17
Background 17
MPEG-1 and QuickTime 18
MPEG-4 and QuickTime 18
MPEG-4 File Format and QuickTime 21
Inside the QuickTime File Format 21
MPEG-4 Web Resources 22
Acronyms and Terms for Understanding MPEG-4 23

Acronyms and Terms Specific to MPEG-4 23
Other Useful Terms 24

Working with MPEG-4 Files 24
How The Process Works 25
New Dialogs for Handling MP4 Files 25

New Video Codec for MPEG-4 31
ISMA and Definitions of Profile 0 32
Profiles and Levels Defined 33

ISMA Profile 0 34
ISMA Profile 1 34
3GPP (Third Generation Partnership Project) 34

Gamma Correction 34
Additional Dialog for MPEG-4 Video Compression 34
Summary 35

MPEG-4 Audio Support 36
Defining AAC 36

4

© Apple Computer, Inc. July, 2002

QuickTime AAC Encoder 36
QuickTime AAC Decoder 38

Native MPEG-4 Streaming 39
MPEG-4 and Web Developers 39

Ways To Use MPEG-4 In QuickTime 40
Why Use MPEG-4 On The Web? 40
Creating QuickTime Movies With MPEG-4 Compression 42
Creating .mp4 Files 42
Playing .mp4 Files in QuickTime 43

Example: Playing .mp4 files over the Web 44
ISO Compliance 45

RTSP Instant-On Enhancement to Streaming 46
User Interface Changes 47
JPEG 2000 Support 49
Flash 5 Support 50

New Flash Media Handler 50
Flash Movie Importer 51
New Flash Properties Info Panel 51
Controlling Mouse Capturing Setting 52

New APIs for Tasking QuickTime 53
The Idle Manager APIs 60

Derived Media Handlers 61
Three Useful Idle Manager Calls 63
General Purpose Idle Manager API 65
Data Handlers 67
Movie Importers 68

New Carbon Movie Control 69
Background 69
How It Works––An Event Target 70
Providing Time to Movies 70
Support for Editing 70
Interface 70
Access to Underpinnings 72

Sprite API Changes 73
Loading Images into a Sprite Track 73
New Sprite APIs 74
Sprite Hit-Testing Mode 77

Controlling Hit-Testing Mode of an Individual Sprite 77
Controlling Hit-Testing Mode of a Sprite Track 78
Handling Mouse Clicks 79

Sprite Track Setting Enhancements 79
Limited Control of Offscreen Bit Depth 80
New Preferred Bit Depth Info Panel 81
Switching Between Modes 81
A New Sprite Track Property 82
Using the

SpriteSetSpriteProperty

 API 83
New Wired Actions and Operands 83

5

© Apple Computer, Inc. July, 2002

New Sprite Actions 83
New Sprite Operands 85
New Wired Actions and Operands for Chapter Lists 85

Going To a Chapter by Index 85
Getting the Name and the Index of a Chapter 86
New Wired Actions and Operands for Sprites and Sprite Tracks 86
Sprite Hit Testing Property, Actions, and Operands 87

Miscellaneous Wired Actions and Operands 87

kQTEventKeyUp

 Event Type Added 87
Random Seed 87
QTVR Object Actions and Operands 88

Additional New Actions and Operands 88
VBR Sound Compression Support 90

Background 90
QuickTime 6 VBR Support 91
Some Techniques For Compressing VBR Audio 91
Using the Standard Sound Compression

Component and VBR Compression 94
Audio File Formats and VBR Compression 95
Doing Something with VBR Audio Data 95

New Tween Component API 97
Changes to Effects Dialog 99

Custom Effect Controls 101
New Behavior Flag

kCustomControl

 Added 102
Using

pdActionCustomNewControlControl

 to Create New Custom
Controls 103

Displaying Text Properly in Application Windows 104
Using

pdActionCustomHandleEvent

 To Process Events 105
Using

pdActionCustomSetFocus

 to Set or Advance Current
Focus 106

Using

pdActionCustomSetEditMenu

 To Locate The Edit Menu 107
Using

pdActionCustomSetPreviewPicture

 To Preview
Information 107

Using

pdActionCustomGetEnableValue

 to Enable or Disable Other
Controls 108

Using

pdActionCustomSetSampleTime

 to Specify Duration and Start
Time 109

Using

pdActionCustomDoEditCommand

 to Handle Edit
Commands 109

QuickTime Effects Classes 112
Major Class 113
Minor Class 113

QuickTime Effects Presets 115
Atom Contents 115
Example Effect

'atms'

 Resource 115
None Codec Enhancements 117

6

© Apple Computer, Inc. July, 2002

Additional Still Image Metadata Support
in Mac OS 9 and Windows 121

Indexed Image Types 121
Alpha Modes 123
Extracted TIFF and Exif Metadata 123

New APIs For Creating Exif Files 125
Improved Movie Toolbox Support for Data Handlers 128

Background 128
Data Handlers and the New QuickTime APIs 129

OpenADataHandler

 Extended 146
Advanced APIs 146

New User Data APIs 152
QuickTime for Java Enhancements 157

Support for JDK 1.4 157
New JQTCanvas 157
New QTVR Authoring Classes 158
Improved QuickTime Client Streaming Support 158
New Sprite Handler APIs 159

AppleScript Changes 160
Recordability 160
Terminology Changes 161

New Commands 161
Enhanced Commands 163

New Sequence Grabber User Interface 167
New Sequence Grabber APIs 170
New Image Compression APIs 186
New Image Decompression Manager APIs 192
New Media Handler APIs For Keyboard Focus 195

Adding Keyboard Focus Capabilities 195
Adding Keyboard Navigation and Editable Text Field Support 203

New QuickTime Restrictions APIs 205
New APIs For Controlling Memory Usage in Movies 210
Miscellaneous Changes and Enhancements 213

Change For All Video Output Components 213
QuickTime VR 213
New QuickTime Menu in Windows 213
New Movie Errors API 214
MIDI Files Now Imported In Place 215
Enabling High Quality on MPEG-4 Video Tracks 216

QuickTime XML Importers 216
SMIL Importer 217
QuickTime Media Link Importer 217
Component Preflight Importer 218
Writing XML Importers 221

New XML Exporter 221
How It Works 221
Media Link Exporter Settings 222

7

© Apple Computer, Inc. July, 2002

Using the Media Link Exporter 223
Default Settings 224

MovieQTList Embed Tag Attribute 225
SMIL Meta Tag Support in QuickTime 228
JavaScript Support for ActiveX, Netscape 6 and Mozilla 230
Playing Shoutcast or Icecast Streams in QuickTime 233

Background 233
Shoutcast and Icecast in QuickTime 234
Opening Icecast or Shoutcast URLs 234
Playing Icecast or Shoutcast Streams

in QuickTime Player 236
Playing Icecast or Shoutcast Streams

in the QuickTime Browser Plug-in 236
Playing Icecast or Shoutcast Streams

Using the QuickTime API 237

Appendix A

Document Revision History

239

8

© Apple Computer, Inc. July, 2002

9

© Apple Computer, Inc July, 2002

What’s New in
QuickTime 6 1

Welcome to QuickTime 6.

This document provides a list of the new features, changes,
and enhanced capabilities that are available in QuickTime 6. If you are a
QuickTime API-level developer, content author, multimedia producer or
Webmaster who is currently working with QuickTime, you should read this
document.

Using Gestalt to Get the QuickTime Version 1

As always, the standard way for Apple developers to determine which
version of QuickTime is installed is by calling the Macintosh Toolbox API

Gestalt

 function. (This Mac OS function is also included in QuickTime
for Windows.)

Listing 1 shows a code snippet that demonstrates how you can check the
version of QuickTime that is installed––in this case, QuickTime 6. Note that the
number

0x06008000

 will test for the GM version of QuickTime 6 but will fail on
pre-release versions of QuickTime.

Listing 1

Determining which version of QuickTime is installed by calling the

Gestalt function

{
/* check the version of QuickTime installed */
long version;
OSErr result;
result = Gestalt(gestaltQuickTime,&version);
if ((result == noErr) && (version >= 0x06008000))
{

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

10

© Apple Computer, Inc July, 2002

/* we have version 6! */
}

}

Documentation and Other Resources 1

This document is intended to provide QuickTime developers with detailed
information designed to support their programming and development efforts.
It is designed to supplement the information provided in the

QuickTime API
Reference

 and the suite of QuickTime documentation which is available online,
in both HTML and PDF formats, for download at

http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/newsframe.htm

For other QuickTime developer documentation, you should refer to

http://www.apple.com/quicktime/developer/

For complete QuickTime API documentation, refer to

http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/frameset.htm

Updates to the QuickTime technical documentation website are provided on a
regular basis; developers can also subscribe to various mailing lists for the latest
news and information.

To sign up for any of Apple’s Developer Programs, refer to

http://developer.apple.com/membership/index.html

Bug Reporting 1

If you encounter any problems using QuickTime 6, please report them, using
the standard Apple bug reporting mechanism described in the Release Notes
accompanying the QuickTime 6 release. It is very important to include a copy of
the file when you report such bugs.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Installing QuickTime 6

11

© Apple Computer, Inc July, 2002

Installing QuickTime 6 1

QuickTime 6 is available for download for Mac OS 8 and 9, Mac OS X, and
Windows. The download site is:

www.apple.com/quicktime/download/

This is the first QuickTime release that has included an installer for Mac OS X.
Users of Mac OS X version 10.1.5 can install QuickTime 6 using the installer on
the QuickTime download page.

Note that the QuickTime 6 installer for OS X will not work on the Jaguar release
of Mac OS X, including pre-release versions of Jaguar that contain an earlier
version of QuickTime 6. The released version of Mac OS X that corresponds to
Jaguar already contains a slightly newer version of QuickTime 6 than the one
available for download.

If you have difficulty performing an installation over the Web because of a
firewall, or if you need to perform multiple installations on a campus or
business, you can download stand-alone installers by following the links on the
download page.

QuickTime Pro users should note that QuickTime 6 requires new registration
numbers. The registration numbers for QuickTime 5 or earlier versions do not
unlock the pro features of QuickTime 6. For the pro version of QuickTime 6, you
need to purchase new registration numbers from Apple. The price is currently
$29.99 USD.

If you need to uninstall QuickTime, run the installer, select the custom install,
and choose Uninstall from the pop-up menu.

If you need to install an earlier version of QuickTime, installers for QuickTime 5
and QuickTime 4 are available from QuickTime support:

http://www.info.apple.com/usen/quicktime/

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

12

Summary of Changes and Enhancements

© Apple Computer, Inc July, 2002

Summary of Changes and Enhancements 1

QuickTime 6 is the first major iteration of QuickTime that is designed to support
the International Organization for Standardization (ISO) specification for
MPEG-4 video and audio. This is a significant advance beyond earlier versions
of QuickTime, in that it allows multimedia producers, content authors and
video artists the capability of distributing

.mp4

 files––in native MPEG-4 video
and audio format––across the Internet, so that those files can be decoded and
played on other players that conform to the ISO MPEG-4 standard.

In one scenario, QuickTime authors will be able to simply install QuickTime 6
and move through their normal workflow, and then, in addition to having the
option of encoding a file using the Sorenson 3 or H.263 codec, authors will be
able to output the content of that file as an

.mp4

 file. This content could then,
potentially, be played on any ISO-compliant device available to end users.

In addition to support for the MPEG-4 standard, this release of QuickTime also
includes a number of new features and enhancements, discussed in this
document.

Enhancements 1

■

Support for ISO-compliant MPEG-4 video and audio, both encode and
decode. Developers, authors, and multimedia producers can now create and
play back MPEG-4 video content, as well as MPEG-4 audio encoded using
Advanced Audio Coding (AAC). Discussed in the section “Support for
MPEG-4” (page 17).

■

QuickTime 6 also supports use of the MPEG-4 video and AAC audio codecs
in QuickTime movies. In many cases, you can choose to create either a native

.mp4

 file or a QuickTime

.mov

 file using MPEG-4 compression. This allows
you to mix MPEG-4 audio and video with other QuickTime media, such as
VR panoramas, sprites, or Flash tracks. Discussed in the section “MPEG-4
and Web Developers” (page 39).

■

A new group of MPEG-4 settings dialogs in QuickTime Player that enable
QuickTime Pro users who work with MP4 files to make a number of
adjustments in video and audio tracks, streaming and compatibility.
Discussed in the section “Working with MPEG-4 Files” (page 24).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Summary of Changes and Enhancements

13

© Apple Computer, Inc July, 2002

■

A new video codec for MPEG-4 video compression. The new codec is ISMA
compliant and conforms to the Profile 0 standard of the MPEG-4
specification, with an extremely low data rate of 64 Kbits/second. The
advantage that this new codec offers is interoperability with other systems.
Interoperability is the primary goal of the new codec. Discussed in the
section “New Video Codec for MPEG-4” (page 31).

■

A new MPEG-4 audio codec that plays audio files of AAC and handles ISMA
profile levels 0 and 1. In the current release both encode and decode are
supported. Discussed in the section “MPEG-4 Audio Support” (page 36).

■

Support for native MPEG-4 streaming. Standard hinted MPEG-4 files (

.mp4

)
can be served directly, without converting to QuickTime Movie (

.mov

) files.
Discussed in the section “Native MPEG-4 Streaming” (page 39).

■

A new, RTSP Instant-On enhancement to QuickTime streaming that provides
near instantaneous start of streamed movies when the available network
bandwidth significantly exceeds the data rate of the target media. Discussed
in the section “RTSP Instant-On Enhancement to Streaming” (page 46).

■

Support for JPEG 2000, a high-quality, still-image compression and coding
standard that uses state of the art compression techniques based on wavelet
technology. Note that JPEG 2000 support is only provided on Mac OS X in
the current release of QuickTime 6. Discussed in the section “JPEG 2000
Support” (page 49).

■

New and updated components related to Macromedia Flash 5 support in
QuickTime. The Flash media handler and the Flash movie importer have
been updated, and a new Flash Properties panel has been added to the
QuickTime Player info panels. Discussed in the section “Flash 5 Support”
(page 50).

■

A new QuickTime tasking mechanism and new APIs to handle idling of
applications. Discussed in the section “New APIs for Tasking QuickTime”
(page 53).

■

A new Carbon Movie Control mechanism for Mac OS X that makes the
process of using QuickTime within a Carbon Event-based application easier
and faster. Discussed in the section “New Carbon Movie Control” (page 69).

■

A new group of Sprite APIs, as well as a number of new wired actions and
operands. Discussed in the section “Sprite API Changes” (page 73).

■

Support for writing and using variable bitrate (VBR)-enabled sound
compressor components. Both the QuickTime Movie exporter component

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

14

Summary of Changes and Enhancements

© Apple Computer, Inc July, 2002

available in the export dialog (also known as the

ConvertMovieToFile

 API
dialog) and the Standard Sound compression dialog component have been
updated to use and recognize VBR compressor components. Discussed in the
section “VBR Sound Compression Support” (page 90).

■

A new API that provides tween components with an interrupt-safe interface.
Discussed in the section “New Tween Component API” (page 97).

■

New, enhanced effects dialogs. Effects may choose to implement custom
controls to allow the user to more easily edit complex parameters that are
ill-served by simple sliders or type in boxes. Effects may allow a custom
control for either a single parameter, or for a group of parameters. Discussed
in the section “Changes to Effects Dialog” (page 99).

■

A new improved None codec (also known as the Raw codec) that replaces
the previous None codec with a more complete implementation. Discussed
in the section “None Codec Enhancements” (page 117).

■

Support for Exif JPEGs and Exif TIFFs, including support for thumbnails,
which was previously only available in QuickTime 5 on Mac OS X 10.1, and
is now available for QuickTime on Mac OS 9 and Windows. Discussed in the
section “Additional Still Image Metadata Support in Mac OS 9 and
Windows” (page 121).

■

New QuickTime data handler-aware APIs that make using Apple and
custom data handlers easier for third-party developers. Discussed in the
section “Improved Movie Toolbox Support for Data Handlers” (page 128).

■

New UserData APIs that can be useful in copying information from one
UserData container to another (page 152).

■

Support for a number of new features and enhancements in QuickTime for
Java, including support for JDK 1.4 (Windows only), and the introduction of
the

JQTCanvas

 class, a new lightweight version of the

QTCanvas

 class which
supports scaling of Flash content. Discussed in the section “QuickTime for
Java Enhancements” (page 157).

■

A new, improved sequence grabber user interface which includes new
settings available on all platforms. A new group of Sequence Grabber APIs
are also included in QuickTime 6. Discussed in the sections “New Sequence
Grabber User Interface” (page 167) and “New Sequence Grabber APIs” (page
170).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Summary of Changes and Enhancements

15

© Apple Computer, Inc July, 2002

■

New Image Compression APIs that allow compressors to supply the User
Interface for their options within the compression dialog (page 186), as well
as new Image Decompression Manager APIs (page 192).

■

New media handler calls that developers can use to write media handlers
that support keyboard focus. If you want to add interactive capabilities to
your application, you need to use these media handler calls. Discussed in the
section “New Media Handler APIs For Keyboard Focus” (page 195).

■

New APIs that provide a mechanism for preflighting operations on
QuickTime content that may be restricted. Discussed in the section “New
QuickTime Restrictions APIs” (page 205).

■

New APIs for better controlling memory usage in movies in Mac OS X (page
210).

■

Miscellaneous enhancements to QuickTime VR, and an additional movie
errors API (page 213).

■

A new XML exporter––Export to QuickTime Media Link––which creates a
small XML file that contains the URL of a movie, as well as other user
settings. Discussed in the section “New XML Exporter” (page 221).

■

JavaScript support for ActiveX controls, Netscape 6 and browsers based on
Mozilla. This means you can now use JavaScript to control QuickTime when
Web pages are viewed using Internet Explorer for Windows, or any other
browser that supports the COM interface to ActiveX controls. Discussed in
the section “JavaScript Support for ActiveX, Netscape 6 and Mozilla” (page
230).

■

Support for DVCPro PAL (DV format 4:1:1) on Mac OS X (10.1.2).

Changes 1

■

Changes to the QuickTime Player user interface. Notably, the Hot Picks
movie and the Channel pane have a new layout, with channel categories on
the left and a movie on the right. Discussed in the section “User Interface
Changes” (page 47).

■

Changes to AppleScript and AppleScript terminology that are new in
QuickTime 6. Most notably, QuickTime Player is now a recordable
application. There are also a number of new commands, classes, and
properties, and well as modifications to existing terminology elements.
Discussed in the section “AppleScript Changes” (page 160).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

16

Summary of Changes and Enhancements

© Apple Computer, Inc July, 2002

■

Changes to the QuickTime menu in the Windows system tray, which
includes a number of new menu items. Discussed in the section “New
QuickTime Menu in Windows” (page 213).

Updates 1

■

New documentation on how to deal with the ever-increasing number of
effect components. This section documents atoms that can be used for
tagging effects into useful categories. Two groupings for effects are defined
here:

Major Class

 and

Minor Class

. Discussed in the section “QuickTime
Effects Classes” (page 112).

■

Some effects with complex parameters would like to provide the user with
groups of useful parameter values that can be easily selected. This section
documents an optional mechanism that can be used by effects to define these
“presets.” Discussed in the section “QuickTime Effects Presets” (page 115).

■ New and updated documentation on QuickTime XML importers. These
importers, introduced in QuickTime 5, create movies based on the contents of
certain kinds of XML files saved with the .mov file extension. XML files with
the .mov file extension are treated by networks and operating systems as
QuickTime movies. There are importers for three XML types currently built
into QuickTime: SMIL importer, QuickTime media link importer, and
component preflight importer. Discussed in the section “QuickTime XML
Importers” (page 216).

■ QuickTime 6 allows you to play current Shoutcast or Icecast streams that use
MP3 compression. This section “Playing Shoutcast or Icecast Streams in
QuickTime” (page 233) discusses the various features of Shoutcast and
Icecast streams, as well as what you need to know in order to deliver these
streams in real-time over a network.

For Web Developers 1

■ Specific information about the different ways that you can use QuickTime 6
and MPEG-4, if you are a developer who creates websites, website authoring
tools, or QuickTime movies that are intended for distribution over a network
or the Internet. Discussed in the section “MPEG-4 and Web Developers”
(page 39).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Support for MPEG-4 17
© Apple Computer, Inc July, 2002

Support for MPEG-4 1

QuickTime 6 supports ISO-compliant MPEG-4 video and audio, both encode
and decode. This means that you can create and play back MPEG-4 video and
audio content. In addition, you can play back MPEG-4 audio encoded using
Advanced Audio Coding (AAC).

Of notable importance is that an .mp4 file is not a QuickTime movie. It must be
imported into QuickTime. You can open .mp4 files using API functions that
support importers, such as NewMovieFromFile or NewMovieFromDataRef, or by
calling an MPEG-4 importer directly. End users can open .mp4 files using
QuickTime Player’s Open or Import commands, by drag-and-drop, or using the
QuickTime browser plug-in (see the section “MPEG-4 and Web Developers”
(page 39)). Double-clicking an .mp4 file from the desktop may or may not open
the file in QuickTime, as other applications can register to handle this file type.

Using the Export to MPEG-4 option in the export dialog, you can create an .mp4
file containing either video, audio, or both, as discussed in the section “Working
with MPEG-4 Files” (page 24).

Background 1

In February 1998, the International Standards Organization (ISO) formally
adopted the QuickTime file format as the starting point for the MPEG-4 file
format, the latest in a series of standards for transmitting video and audio
information. MPEG-4 differs from MPEG-1 and MPEG-2 by adopting a
component-based architecture for multimedia, an approach similar to
QuickTime’s architecture. Other existing standards have less flexibility and treat
multimedia as just an array of picture elements.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

18 Support for MPEG-4

© Apple Computer, Inc July, 2002

MPEG-1 and QuickTime 1

MPEG-1, often simply called MPEG, is fairly common on the Web and
CD-ROMs, typically with the .mpg file extension. MPEG-1 supports one kind of
video compression and a few types of audio compression. MPEG-1 allows
coding of moving pictures and associated audio for digital storage media at up
to about 1.5 Mbit/second. The content of an MPEG file is one or more MPEG
streams. Elementary audio and video streams can be multiplexed into a
combined stream.

MPEG-1 was designed to provide VHS-quality video at T1 data rates (single
speed, or 1x, CD-ROM). It is the basis for the video CD standard, which is little
used in the United States or Europe but is popular in Asia. Most commercial
DVD players can play video CDs, however, and the rapid spread of CD-R
burners and DVD players is currently fueling renewed interest in this format.

QuickTime can open and play MPEG-1 video on both Windows and Macintosh
(requires QuickTime 5 or later for Windows). It can then export the video to
other formats using any of the QuickTime compressors. Currently, QuickTime
treats the entire MPEG-1 stream as a single sample, so you cannot cut or copy
part of an MPEG-1 video unless you convert it to a different compression
format first.

MPEG-1 can also contain audio. The audio can be compressed in two different
formats: layer 2 (often called MPEG-1 audio) and layer 3 (known as MP3).
QuickTime plays both layer 2 and layer 3 audio without difficulty, including
streaming MP3 such as ShoutCast. QuickTime can also play multiplexed layer 2
audio (audio and video streams combined), but it cannot export or extract layer
2 audio from a multiplexed MPEG-1 stream.

QuickTime Player does not export to MPEG-1 streams, nor does it compress
audio or video using MPEG-1 compression. MPEG-1 compression can be added
to QuickTime with the Heuris MPEG codec (www.heuris.com/) or with the
MPEG-1 encoder included with Roxio Toast (www.roxio.com/).

MPEG-4 and QuickTime 1

The MPEG-4 standard was recently revised to MPEG-4 Version 2, which is the
latest standardized version. (Note that amendments to Version 2 have already
been added, as the standard grows and evolves.) In any case, the standard
outlines file conventions and compression formats not only for audio and

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Support for MPEG-4 19
© Apple Computer, Inc July, 2002

video, but for text and multimedia integration. Because the MPEG-4 file format
is largely based on the QuickTime file format, MPEG-4 files are potentially as
diverse in content as QuickTime movies. This is a rich and complex
specification.

Software and hardware vendors will implement the MPEG-4 specification in
stages. The parts of the specification that are implemented by a given MPEG-4
player are called a player profile.

A profile is, essentially, a grouping of technologies, defined as “tools” in MPEG
terminology. Profiles are a “normative” part of the standard, in that an
implementation must conform to a profile in order to claim conformance to the
standard itself. Profiles are specified in such a way as to maximize
interoperability.

A good example is the way in which this was applied to the MPEG-1 Audio
standard. There are three layers in MPEG-1 Audio. Layer 1 has the least
complexity but the lowest compression performance, while Layer 3 has the
highest complexity but also the highest compression performance. Profiles that
include layer 3 also typically include layers 1 and 2. In this case, interoperability
is maximized because a terminal implementing a profile which includes layer 3
can decode layer 1, 2 and 3 bitstreams, while a layer 2 terminal can decode only
layer 1 and 2 bitstreams and a layer 1 decoder only a layer 1 bitstream.

No one currently implements the full MPEG-4 specification. There are no
widely distributed MPEG-4 video codecs. (There was a codec available for
Windows Media Player called MS MPEG-4, but this was actually a proprietary
Microsoft codec that was partly based on a draft specification for MPEG-4. The
early version released by Microsoft was not compatible with the final standard,
and has since been renamed. Microsoft has also released a standard MPEG-4
codec, but it is not in an interoperable file format.)

QuickTime’s MPEG-4 video codec focuses on low-bandwidth video for Internet
delivery, with the goal of delivering near-television quality over DSL and cable
modems, and reasonable quality over dialup modems.

QuickTime’s implementation of MPEG-4 is designed to be interoperable with
products from other standards-compliant vendors.

A diagram of the MPEG-4 system architecture is shown in Figure 1. The items
in bold in specific boxes indicate the various parts of the architecture that
QuickTime currently supports.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

20 Support for MPEG-4

© Apple Computer, Inc July, 2002

Figure 1 MPEG-4 system architecture

Video
area

Audio Audio

Stream Manager

Scene

Scene description

Scene animation

Face/Body
animation video stillGeneral

audio
AAC and
TwinVQ

Speech,
Celp, and

HVXC

Music
HILN

"MIDI"
structured

audio

Text to
speech

Scene is constructed by
drawing the basic scene,
placing audio and video
in the scene, and then
animating it.

Terminal
or Client

MP4 File

Local or
Network

Describe, add, and
delete streams

MP4 file format

Delivery streams (local or over network)

Visual Audio Scene Insert-
ObjectMPEGJ DRM

(IPMP)
Object descriptor

(stream management)

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Support for MPEG-4 21
© Apple Computer, Inc July, 2002

MPEG-4 File Format and QuickTime 1

The MPEG-4 File Format (MP4), which is derived from the QuickTime File
Format, is a format that is designed to store MPEG-4 data in a file. This process
is outlined by Rob Koenen, chair of the MPEG-4 Requirements Group, in his
document MPEG-4 Overview, which provides a brief overview of the MPEG-4
File Format, as follows:

“The MP4 file format is designed to contain the media information of an
MPEG-4 presentation in a flexible, extensible format which facilitates
interchange, management, editing, and presentation of the media. This
presentation may be ‘local’ to the system containing the presentation, or may be
via a network or other stream delivery mechanism. The file format is designed
to be independent of any particular delivery protocol while enabling efficient
support for delivery in general. The design is based on the QuickTime format
from Apple Computer Inc.”

The diagram shown in Figure 2 gives an example of a simple interchange file.
Note that BIFS, an acronym for Binary Format for Scene, specifies the Scene,
and OD (Object Descriptor) specifies the Stream Management.

Figure 2 A simple interchange file

Inside the QuickTime File Format 1

The QuickTime file format is designed to accommodate the various kinds of
data that need to be stored in order to work with digital media. Because the file
format can be used to describe almost any media structure, it is an ideal format

mp4 file

mdat
Interleaved, time-ordered,
BIFS (scene), OD (Stream
Management), video, and
audio access units

moov

...other atoms

'trak' (audio)

'trak' (OD)

'trak' (video)

'trak' (BIFS)IOD

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

22 Support for MPEG-4

© Apple Computer, Inc July, 2002

for the exchange of digital media between applications, regardless of the
platform on which the application may be running.

The basic data unit in a QuickTime file is the atom. Each atom contains size and
type information along with its data. The size field indicates the number of
bytes in the atom, including the size and type fields. The type field specifies the
type of data stored in the atom and, by implication, the format of that data.

Atom types are specified by a 32-bit integer, typically a four-character code.
Apple Computer reserves all four-character codes consisting entirely of
lowercase letters. Unless otherwise stated, all data in a QuickTime movie is
stored in big-endian (network) byte ordering. All version fields must be set to 0,
unless otherwise stated. Atoms are hierarchical in nature. That is, one atom can
contain one or more other atoms of varying types.

For more detailed information, refer to the volume Inside QuickTime: QuickTime
File Format (351 pp, 2.3 MB), which is available as a free download from Apple’s
QuickTime API website in both HTML and PDF formats at

http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/frameset.htm

The book begins with an introduction to QuickTime atoms, then presents the
structure of the QuickTime file format in detail. This is followed by a series of
code examples for manipulating a QuickTime file using the QuickTime API. A
series of appendixes describe some common file formats that can be contained
within a QuickTime file as data. The book is intended primarily for developers
who need to work with QuickTime files outside the context of the QuickTime
environment.

MPEG-4 Web Resources 1

The home page of the Moving Picture Experts Group (MPEG), a working group
of ISO/IEC in charge of the development of standards for coded representation
of digital audio and video, can be found at

http://mpeg.telecomitalialab.com/

An in-depth presentation of MPEG-4 can be found at

http://www.cselt.it/mpeg/standards/mpeg-4/mpeg-4.htm

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Support for MPEG-4 23
© Apple Computer, Inc July, 2002

Answers to specific MPEG-4 questions can be found at

http://www.cselt.it/mpeg/faq.htm

MPEG-4 standards are in the 14496 series and the specifications can be
purchased from ISO at

http://www.iso.ch

The MPEG-4 implementation forum promotes MPEG-4 and is spearheading
licensing efforts at

http://www.m4if.org

The Internet Streaming Media Alliance (ISMA) is promoting a specification and
integration of products around a subset of MPEG-4 over IP networks at

http://www.isma.tv

Acronyms and Terms for Understanding MPEG-4 1

A veritable alphabet soup of acronyms and terms has emerged in the MPEG-4
specification, a sampling of which is shown here.

Acronyms and Terms Specific to MPEG-4 1

BIFS Binary Format for Scene

CIF Common Intermediate Format (352 x 288)

ESD Elementary Stream Descriptor

IEC International Electrotechnical Commission

IOD Initial Object Descriptor

MP4 MPEG-4 File Format

M4IF MPEG-4 Industry Forum

OD Object Descriptor

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

24 Working with MPEG-4 Files

© Apple Computer, Inc July, 2002

Other Useful Terms 1

AVP Audio Visual Profile (IETF RFC 1890)

cRTP Compressed Real-Time Protocol(IETF RFC 2508)

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISMA Internet Streaming Media Alliance

ISO International Organization for Standardization

QCIF Quarter Common Intermediate Format (176 x
 144)

QoS Quality of Service

RFC Request for Comment

RTP Real-Time Protocol (IETF RFC 1889)

RTSP Real-Time Streaming Protocol (IETF RFC 2326)

SDP Session Description Protocol (IETF RFC 2327)

TCP Transmission Control Protocol (IETF RFC 793)

UDP User Datagram Protocol (IETF RFC 768)

Working with MPEG-4 Files 1

QuickTime 6 provides transparent access to MPEG-4 files. You can open .mp4
files using API functions that support importers, such as NewMovieFromFile or
NewMovieFromDataRef. End users can open .mp4 files using QuickTime Player's
Open or Import commands, or by drag-and-drop. The process is similar to
working with an .avi file or other playable non-movie file. Double-clicking an
.mp4 file from the desktop may or may not open the file in QuickTime, as other
applications can register to handle this file type.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Working with MPEG-4 Files 25
© Apple Computer, Inc July, 2002

Currently, in order to save an .mp4 file, you use the new QuickTime MPEG-4
movie exporter. The exporter offers basically two ways of working:

■ Encoding to MPEG-4 video or audio for each track.

■ If the data is already MPEG-4 compatible, then it will perform a pass-thru
option for those tracks.

How The Process Works 1

Typically, when you open a movie, QuickTime finds the movie atom in the file,
processes it, and creates a movie object, i.e., instantiates it. When you use MP4,
you have to invoke the importer. What the importer does is scan the file, find
the 'moov' atom, and then conform the 'moov' atom––which is an MPEG-4-style
movie atom––into a 'moov' atom that is QuickTime-style. QuickTime then
creates the movie object.

In the case of exporting, where the data is already in MPEG-4 format––MPEG-4
video or audio––the exporter has QuickTime flatten the data to the file. This
produces the movie atom, which points to the file. The exporter once again
conforms the movie atom, which is QuickTime-style, into a movie atom which
is MPEG-4-style. The exporter then writes this to the file. This is pass-thru.

For an encoding or re-encoding export, the exporter compresses and then writes
the MPEG-4 data to a file, whose movie is subsequently made to conform to
MPEG-4 style.

New Dialogs for Handling MP4 Files 1

QuickTime 6 introduces a new set of dialogs in QuickTime Player (illustrated in
this section with examples from Mac OS 9 and Mac OS X) that enable end users
to open MP4 files.

To work with MP4 files, end users or content authors need to perform a series of
import-export operations, using QuickTime Pro. The steps are as follows:

1. Open a .mov file in QuickTime Player.

2. In the File menu, click Export.

3. A dialog appears with a list of export options. Choose Movie to MPEG-4.

4. Save the .mov to a .mp4 file.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

26 Working with MPEG-4 Files

© Apple Computer, Inc July, 2002

5. The .mp4 file can now be played on any player that supports MPEG-4.

Figure 3 shows the dialog (in Mac OS 9) that appears when you want to save a
QuickTime movie, in this case “cool sunset” to a .mp4 file. From the list of
options in Export, you choose Movie to MPEG-4.

Figure 3 The dialog that appears when you want to save a QuickTime movie to
an MPEG-4 file in Mac OS 9 by exporting

If you click the Options button in the dialog shown in Figure 3, the MPEG-4
Settings dialog appears, as shown in Figure 4. In this dialog, you can set the
basic video track, the physical size of current movie, and the audio track as
necessary. If Basic is selected, the video will make use of the basic settings for
MPEG-4 and ensure the widest possible range of playback on MPEG-4
compatible devices.

Note that Profile 0, in the text of the dialog, is the ISMA-specified Profile 0, and
not the MPEG-4 defined Profile 0. For more information about ISMA and
Profile 0, refer to the section “ISMA and Definitions of Profile 0” (page 32).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Working with MPEG-4 Files 27
© Apple Computer, Inc July, 2002

Figure 4 The MPEG-4 settings dialog in Mac OS X, with the General pane
selected

Note that the lower portion of the dialog in Figure 4 contains additional
description and explanation about the choices that are available to the user.
Audio can be optimized for music––in this case, AAC. (Note AAC can handle a
full range of music and other audio.)

In the Video settings dialog in Mac OS X shown in Figure 5, the end user can
adjust specific settings for video, such as the number of kbits per second, or the
frame rate––for example, 15 frames per second, if that is the rate desired.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

28 Working with MPEG-4 Files

© Apple Computer, Inc July, 2002

Figure 5 The MPEG-4 settings dialog, with the Video pane selected

Figure 6 shows the settings available for audio in Mac OS X––for stereo or mono
encoding. If the user selects music in the basic panel, it automatically selects a
high data rate and selects stereo.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Working with MPEG-4 Files 29
© Apple Computer, Inc July, 2002

Figure 6 The MPEG-4 settings dialog in Mac OS X, with the Audio pane selected

Figure 7 shows the settings dialog for streaming, which enables the user to
select the type of hinting required, as well as maximum packet size and
maximum packet duration.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

30 Working with MPEG-4 Files

© Apple Computer, Inc July, 2002

Figure 7 The MPEG-4 settings dialog in Mac OS X, with the Streaming pane
selected

Figure 8 shows the Compatibility settings dialog in Mac OS X. By default,
QuickTime produces a generic MPEG-4 stream. QuickTime does not check for
any specific layer compatibility features that might be required by ISMA or
other organizations. Nor does QuickTime check if the overall data rate of the
MPEG-4 you’re producing is any particular data rate.

The user can select ISMA compliance, and also select the speed at which you
want to stream the file––for example, at a medium data rate.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Video Codec for MPEG-4 31
© Apple Computer, Inc July, 2002

Figure 8 The MPEG-4 settings dialog in Mac OS X, with the Compatibility pane
selected

New Video Codec for MPEG-4 1

QuickTime 6 provides a new video codec for MPEG-4 video compression. The
new codec is ISMA compliant and conforms to the Profile 0 standard of the
ISMA specification. It can provide an extremely low data rate of 64 kbits/
second. The advantage that this new codec offers is interoperability with other
systems. Interoperability is the primary goal of the new codec.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

32 New Video Codec for MPEG-4

© Apple Computer, Inc July, 2002

For application developers, this new codec is similar to other codecs that ship
with QuickTime. As such, it behaves like any other codec that developers have
had experience with, such as the JPEG codecs. From a programming point of
view, developers will be able to pop up the Standard Compression dialog and
that will provide a choice for users.

Developers may want to develop certain applications around this codec for
broadcasting, for example, because of its low data rate and because it builds on
the H.263 specification.

The key features of the new video codec for MPEG-4 video compression can be
summarized as follows:

■ Implements MPEG-4 Video Simple Profile, which supports

■ Video at 50 kbps to 4 Mbps
■ Streaming
■ Delivery to wireless handheld devices
■ Stored content
■ Kiosk applications
■ Set-top boxes

■ Decodes most ISMA and 3GPP streams

■ Displays a detailed warning if it can’t open a particular stream

■ Encodes ISMA- or 3GPP-compliant streams

■ Improved video processing, including gamma correction

ISMA and Definitions of Profile 0 1

The Internet Streaming Media Alliance (ISMA) specification <http://
www.isma.tv/> is aimed at producing a technical standard based on MPEG-4 for
files and streaming MPEG-4 video and audio over IP networks. In that
standard, a file will have one video track and one audio track, likewise for
streaming tracks. The aggregate data rate cannot exceed the limit of 64 Kbits/
second, which conforms to Profile 0.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Video Codec for MPEG-4 33
© Apple Computer, Inc July, 2002

As ISMA defines it:

“To be compliant with this specification a product must completely implement
profile 0, and may implement additional profiles. For example, an on-demand
video server would likely need to implement all possible profiles to address a
wide client base. However a decoder/terminal may only support profile 0.

“This approach has been taken to ensure that any product certified as ISMA
compliant, has the capability to minimally interoperate with any other ISMA
compliant product.

“This is a definition of base interoperability. Vendors are still free to add
additional functionality beyond that specified in this document. However that
said, a conforming product cannot make any additional requirements beyond
this specification to interoperate with another conforming system.”

In the specification, Profile 0 is defined this way:

“Rationale: This profile was selected to allow for video and audio at bitrates
suitable that match capabilities of narrowband and mobile wireless
infrastructures and to align with the patent pool work in M4IF.”

For video, this includes the following:

■ REQUIRED - MPEG-4 ISO/IEC 14496-2:1999 + Cor 1:2000 + Cor 2:2001

■ MPEG-4 Simple Profile @ Level 1

■ Typical Visual Session Size is QCIF (176x144)

■ Maximum bitrate is 64kbit/s

■ ISMA Restriction: Profile 0 is limited to one (1) video object only.

Profiles and Levels Defined 1

A profile can be thought of as a grouping together of different algorithms,
specifying what your video codec can and cannot do. A level, on the other
hand, specifies how much your codec can do. A level, for example, may restrict the
computational complexity within a profile, specifying the bitrate constraints on
a video or audio stream. Both profiles and levels are stored within an MPEG-4
file, so that the playback device “knows” whether or not it can in fact play back
the file.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

34 New Video Codec for MPEG-4

© Apple Computer, Inc July, 2002

ISMA Profile 0 1

■ MPEG-4 Video Simple Profile

■ 176 x 144 at 15 fps and 64 kbps

ISMA Profile 1 1

■ Simple or Advanced Simple Profile

■ 352 x 288 at 30 fps and 1.5 Mbps

3GPP (Third Generation Partnership Project) 1

■ Similar to ISMA Profile 0

■ Designed for wireless handheld devices

Gamma Correction 1

In QuickTime 6, the MPEG-4 video codec performs gamma correction, so that
MPEG-4 files look the same when they are displayed on both Macintosh and
Windows computers. An MPEG-4 video stores both gamma and color space
information, while the video codec performs per-platform gamma correction.

Additional Dialog for MPEG-4 Video Compression 1

Figure 9 shows a Compression Settings dialog in Mac OS X (available in
QuickTime Player Pro) that provides MPEG-4 Video as a selectable choice for
the content author or end user. The dialog also provides two selectable
compression types: Faster and More Accurate.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Video Codec for MPEG-4 35
© Apple Computer, Inc July, 2002

Figure 9 The Compression Settings with MPEG-4 Video as a selectable item for
the content author

Summary 1

For developers, some important points to keep in mind about QuickTime 6
support for MPEG-4:

■ MP4 files can be opened by any application that uses the standard
QuickTime calls.

■ Any application can create MP4 files by using the standard QuickTime
export calls.

■ MPEG-4 codecs behave like other QuickTime codecs.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

36 MPEG-4 Audio Support

© Apple Computer, Inc July, 2002

MPEG-4 Audio Support 1

QuickTime 6 plays audio files of AAC and handles ISMA profile levels 0 and 1,
with the exception of CELP audio. In the current release both encode and
decode of AAC are supported. (Note that encode is AAC [Low Complexity]
only.) QuickTime 6 conforms to the MPEG-4 audio specification.

QuickTime 6 audio can handle reading in MP4 files, and can export them to
QuickTime movies.

A few current limitations:

■ Audio can only handle ISMA Profile 0 and Profile 1 for AAC.

■ Audio cannot handle multichannel AAC.

Defining AAC 1

The characteristics of AAC include

■ Perceptual audio codec, similar to MP3

■ Multichannel capability

■ “Indistinguishable” audio quality––that is, you can take an encoded file and
the source from the encoded file and you should not be able to tell the
difference over a stereo system. From a CD source:

■ AAC Low Complexity requires 96 kbps per channel.
■ MP3 requires at least 128 kbps per channel.

QuickTime AAC Encoder 1

The characteristics of the QuickTime AAC encoder include

■ AAC-Low Complexity

■ Acceptable source

■ 44.1 kHz or 48 kHz. It is recommended that when encoding audio, your
source should be an even multiple of those numbers.

■ Mono or stereo

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

MPEG-4 Audio Support 37
© Apple Computer, Inc July, 2002

■ Output

■ Mono: 16 to 256 kbps
■ Stereo: 16 to 256 kbps
■ The sample rate is automatically scaled to the bitrate.

IMPORTANT

The output sample rate is linked directly to the output
bitrate and number of channels. Note that the listed sample
rates are input sample rates. Using QuickTime, the encoder
can take any sample rate that QuickTime can play. But no
matter what sample rate you happen to provide, that rate
will be converted to the selected sample rate before it is fed
to the encoder. Thus, it is best to provide a sample rate that
divides evenly into the selected sample rate. For example, if
you have a 22.050 kHz source, select 44.1; if you have a 16
kHz source, select 48.

Table 1 is a mapping of the input sample rate + output bitrate +
output number of channels to output sample rate.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

38 MPEG-4 Audio Support

© Apple Computer, Inc July, 2002

Table 1 A mapping of the input sample rate + output bitrate + output
number of channels to output sample rate

Note
Future implementations may have different bitrate and
sample rate mappings.

You are best advised to provide content in these sample rates, regardless of the
target bitrate. If you already have content in a different sample rate, however, it
is not a problem. QuickTime will perform the necessary Sample Rate
conversion.

QuickTime AAC Decoder 1

The characteristics of the QuickTime AAC decoder include

Input sample rate Output bitrate
Output sample rate
(one channel)

Output sample rate
(two channels)

48000 8000 8000 none defined
16000-20000 16000 8000
24000-28000 22050 11025
32000 32000 16000
40000, 480000 32000 22050
56000 32000 24000
64000, 80000, 96000,
112000

48000 32000

128000+ 48000 48000
44100 8000 8000 none defined

16000, 20000 16000 8000
24000, 28000 22050 11025
32000 32000 16000
40000, 48000 32000 22050
56000 32000 24000
64000, 80000, 96000,
112000

44100 32000

128000+ 44100 44100

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Native MPEG-4 Streaming 39
© Apple Computer, Inc July, 2002

■ AAC Low Complexity

■ 8 to 320 kbps
■ 8 to 48 kHz
■ Mono or stereo

■ ISMA Profile 0, 1 compliant

Native MPEG-4 Streaming 1

QuickTime 6 provides support for native MPEG-4 streaming. Standard hinted
MPEG-4 files can be served directly, without converting to .mov files.

For authoring in QuickTime 6, there are new packetizers and reassemblers, one
for audio and one for video. These are used to take a .mov or .mp4 and produce a
hinted .mov, or a hinted .mp4. (MP4 files have in them a definition of hint tracks,
which is the QuickTime version of hint tracks.) Authors can then take this
movie and place it on a Streaming Server. The MPEG-4 file format includes hint
tracks which are the same as native QuickTime hint tracks.

Using QuickTime Streaming Server 4––Apple’s streaming media server––for
example, you can serve ISO-compliant hinted MPEG-4 files to any
ISO-compliant MPEG-4 client, including any MPEG-4 enabled device that
supports playback of MPEG-4 streams over IP. You can also serve on-demand
or live MPEG-4 streams, and reflect playlists of MPEG-4 files.

Note that QuickTime 6 does not support interleave for RTP audio packing.

MPEG-4 and Web Developers 1

This section discusses the various ways that you can use MPEG-4 in QuickTime,
as well as how to create, compress, and play MP4 files on the Web. It also
provides an example of how to embed an .mp4 file in a Web page so that it will
be played only by QuickTime. The section concludes with a discussion of some
of the issues involved in creating ISO-compliant MP4 files to ensure that they
are interoperable with players other than QuickTime.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

40 MPEG-4 and Web Developers

© Apple Computer, Inc July, 2002

If you are a developer who creates websites, website authoring tools, or
QuickTime movies intended for distribution over a network or the Internet, you
will want to read this section.

Ways To Use MPEG-4 In QuickTime 1

There are three different ways you can use MPEG-4 in QuickTime.

1. You can create QuickTime movies (.mov) that use the MPEG-4 video and/or
audio codecs. These are not .mp4 files, and MP4 players will not play them.
They are QuickTime movies and they require QuickTime 6 or later to play.

2. You can create MPEG-4 files (.mp4) that are ISO-compliant. These are MP4
files. They are not QuickTime movies. All ISO-compliant players should be
able to play these files with no difficulty. QuickTime Player is an
ISO-compliant player and can play ISO-compliant MP4 files created on any
platform.

3. You can create MPEG-4 files (.mp4) that are not ISO-compliant. These MP4
files may not play on other MP4 players, but they will play in QuickTime 6.
(For more information about issues involving ISO compliance, see the section
“ISO Compliance” (page 45).)

QuickTime 6 allows you to create both fast-start and streaming versions of your
movies in both .mov and .mp4 format. Movies that use MPEG-4 codecs can be
hinted for streaming, exported to .mp4 files, or both, without recompressing the
audio or video.

Why Use MPEG-4 On The Web? 1

MPEG-4 is an ISO standard supported by a wide range of companies in a
variety of industries, as discussed in the section “Support for MPEG-4” (page
17). This means that an MPEG-4 file can be played by many different players in
addition to QuickTime, not only on personal computers, but also on cell
phones, PDAs, and television set-top boxes. This is a huge step forward from
the current proprietary environment, which may lead you to deliver your
movies using different compressors and multiple formats––such as Real,
Windows Media, and QuickTime––just to serve your Mac and Windows
customers.

QuickTime movies compressed using MPEG-4 audio and video codecs can be
exported to MPEG-4 file format without recompression, allowing you to serve

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

MPEG-4 and Web Developers 41
© Apple Computer, Inc July, 2002

your movies in multiple formats (.mov and .mp4) without sacrificing quality or
time.

At typical Internet data rates, the MPEG-4 simple video codec is comparable to
Sorenson3 video. This a good reason for using a codec in itself, but there are
other advantages. The MPEG-4 video codec scales very well at extremely low
bitrates, making it suitable for cell phones and PDAs with data rates even lower
than dialup modems. In addition, MPEG-4 video compression can be very fast,
making it suitable for live broadcasts and decreasing the time spent
compressing movies.

Note
The current release of QuickTime 6 includes only the
MPEG-4 simple video compressor. Higher quality and
lower bitrates can be expected from the advanced video
compressor.

MPEG-4 audio uses the Advanced Audio Codec (AAC), as discussed in the
section “MPEG-4 Audio Support” (page 36). This codec provides better quality
than mp3 audio at any given bitrate, or equivalent quality at a lower bitrate
(typically about 30% lower). At higher bitrates, AAC supports multichannel
surround-sound audio. Like MP3 before it, MP4 audio is a standard, so it is
entirely possible that devices currently supporting MP3 (MP3 players, CD
players, DVD players) will soon be available for MP4 as well. This is a premium
quality audio codec for ISDN data rates and above.

For low bandwidth audio suitable to dialup modems or portable wireless
connections, however, the QDesign2 music codec and Qualcomm Purevoice
codecs remain better choices.

The MPEG-4 specification includes a low bandwidth audio codec based on
CELP (codebook excited linear predictive) algorithms similar to the Purevoice
codec.

Note
The current release of QuickTime 6 supports AAC audio at
44.1 and 48 kHz in mono or stereo. It does not currently
support multichannel sound or other sampling rates for
AAC audio, as discussed in the section “Defining AAC”
(page 36).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

42 MPEG-4 and Web Developers

© Apple Computer, Inc July, 2002

Creating QuickTime Movies With MPEG-4 Compression 1

You can use the MPEG-4 audio and video compressors as you would any other
QuickTime codecs, as explained in the section “New Video Codec for MPEG-4”
(page 31). The MPEG-4 video and audio codecs are available in the standard
QuickTime compression dialog box.

From QuickTime Player, choose Export (File menu), Movie to QuickTime Movie
(pop-up menu), and click the Options button. Click the Settings button for
audio or video and choose MPEG-4 from the compressor list. There are a
variety of settings for audio and video, such as frame rate, quality, and data rate
limit. Click the Size button to change the pixel dimensions of the video track.
Click Okay, then Save.

Note
Movie export from QuickTime Player requires
QuickTime Pro.

Other applications that use the standard file compression dialog automatically
gain the ability to use MPEG-4 compression when you install QuickTime 6.

Creating .mp4 Files 1

To create .mp4 files from QuickTime Player, choose Export (File menu), Movie
to MPEG-4, (pop-up menu), and click the Options button. This opens a dialog
box with tabs for General, Video, Audio, Streaming, and Compatability. Use this
dialog box to select your MPEG-4 compression settings. These panels are
described and illustrated in the section “New Dialogs for Handling MP4 Files”
(page 25).

The General settings allow you to export audio, video, or both. You can make
some choices about audio and video compressor settings here as well.

One of your compression choices is Pass Through. Use this setting to export a
QuickTime movie with MPEG-4 compression to the .mp4 file format without
recompressing the data. This is a very fast operation and does not degrade
audio or video quality.

The Size menu gives you three choices in the current release
of QuickTime 6––Current, 320 x 240, and 160 x 120. If you need a
different frame size, you can resize the movie and choose Current.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

MPEG-4 and Web Developers 43
© Apple Computer, Inc July, 2002

Note
In QuickTime Player, you can resize a movie by opening
the properties window (Movie menu, Get Movie
Properties), choosing a video track from the left pop-up
menu, and choosing Size from the right pop-up. Click the
Adjust button and resize the track by dragging with the
mouse (the properties pane shows the pixel dimensions as
you drag). Click the Done button when you have the
correct size. If there are multiple video tracks, resize the
largest track and repeat as necessary until all the tracks are
within the desired bounds.

The Video settings allow you to set a video bitrate limit, frame rate, and
keyframe rate.

The Audio settings allow you to set an audio bitrate limit and number of
channels.

Text at the bottom of each pane changes as you choose settings to help you
undertand the options and monitor ISO compliance. The Compatability pane
lets you override audio and video settings to ensure ISO compliance. For more
information, see the section “ISO Compliance” (page 45).

The Streaming pane lets you create a fast-start or streaming .mp4. If you choose
streaming, QuickTime will add a hint track. You can choose this option with the
codecs set to Pass Through to turn a fast-start movie with MPEG-4 compression
into a hinted .mp4 without recompressing.

Note
Optimizing hints for server is no longer recommended. It
greatly expands the file size of the streaming movie, and
optimizations in the streaming server make it unnecessary.

You can stream .mp4 files using the QuickTime Streaming Server (version 4 or
later), the Darwin Streaming Server (version 4 or later), or any ISO-compliant
streaming server. QuickTime 6 can also play MP4 streams from any
ISO-compliant source.

Playing .mp4 Files in QuickTime 1

Double-clicking .mp4 files from the desktop may launch QuickTime Player, or it
may launch some other application that is registered for .mp4 files on your
computer.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

44 MPEG-4 and Web Developers

© Apple Computer, Inc July, 2002

Files created on the Mac OS have a creator code as well as a file type, so the
operating system will usually call QuickTime Player for an .mp4 file created
locally on a Mac. This creator code is normally lost, however, if a file is stored
on Windows or Unix file systems, something which commonly occurs when a
file is transferred over the Internet.

To deliver .mp4 files over the Internet, your Web server needs to be configured
for the .mp4 MIME type (video/mp4). Once this is done, a browser will play
.mp4 files using the plug-in or ActiveX control registered for video/mp4. If you
post your .mp4 file to the Web and attempt to view it using QuickTime, an error
stating that “This is not a file that QuickTime understands,” or an attempt to
display the file as text, generally indicates that the Web server is not configured
for the mp4 MIME type.

Note
For audio-only .mp4 files, the optional MIME type audio/
mp4 can be used. These files can also use the video/mp4
MIME type, however.

To embed an .mp4 file in a Web page so that it will be played only by
QuickTime, use both the OBJECT tag––specifying the QuickTime ClassID and
Codebase––and the EMBED tag, with SRC set to a QuickTime MIME type––such as
.qtif or .pntg––and QTSRC set to the .mp4 file, as shown in the following
example.

Example: Playing .mp4 files over the Web 1

<OBJECT
CLASSID="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"

CODEBASE="http://www.apple.com/qtactivex/qtplugin.cab"
WIDTH="320" HEIGHT="256" >

<PARAM NAME="src" VALUE="My.mp4" >
<PARAM NAME="autoplay" VALUE="true" >

<EMBED SRC="QTMimeType.pntg" TYPE="image/x-macpaint"
PLUGINSPAGE="http://www.apple.com/quicktime/download"

QTSRC="My.mp4" WIDTH="320" HEIGHT="256"
AUTOPLAY="true" >

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

MPEG-4 and Web Developers 45
© Apple Computer, Inc July, 2002

</EMBED>

</OBJECT>

Note
This is the same technique you would use to be sure that
any non-QuickTime file (such as an .mp3 or .aiff file) is
played by the QuickTime browser plug-in.

The OBJECT tag works with Internet Explorer 4 and later on Windows. The
ClassID specifies the QuickTime ActiveX control, and the Codebase tells Explorer
where to find the ActiveX control if it is not installed. The PARAM tag with
name="src" has the URL of your MP4 file as its value.

The EMBED tag works with all other Windows browsers and all Mac browsers
including Internet Explorer. The SRC parameter is set to a file whose MIME type
is used exclusively by QuickTime, such as .pntg (image/x-macpaint) or .qtif
(image/x-quicktime). You can also use .mov (video/quicktime). This file must
exist and is downloaded by the browser, but it is not displayed. The browser
uses the QuickTime plug-in to handle any file of this MIME type.

The PLUGINSPAGE parameter tells the browser where to find the QuickTime
plug-in if it is not installed. The QTSRC parameter holds the url of your MP4 file,
and this is what QuickTime plays.

ISO Compliance 1

The MPEG-4 specification is more than just a video codec or an audio codec. It
defines a rich set of multimedia, including such things as text and facial
animation, as discussed in the section “Support for MPEG-4” (page 17).

No software is currently able to display all the different media described in the
MPEG-4 specification. Consequently, MPEG-4 defines profiles (discussed in the
section “Profiles and Levels Defined” (page 33), which describe the subset of
MPEG-4 features a particular player supports, and the feature set a particular
movie requires.

A Profile 0 player, for example, can play simple MPEG-4 video at speeds up to
64 kbit/second, and AAC audio at 44.1 and 48 kHz in mono or stereo. A Profile
0 movie does not require any other features for correct playback. A Profile 0
player can play any Profile 0 movie.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

46 RTSP Instant-On Enhancement to Streaming

© Apple Computer, Inc July, 2002

A Profile 1 player has a larger required feature set that includes everything in
Profile 0 as well as features such as multichannel sound and higher bitrate
video.

If an MP4 movie uses even one feature of theProfile 1 set (that is not also part of
the Profile 0 set), it is a Profile 1 movie, because it requires a Profile 1 player for
reliable playback.

If an MP4 player is missing even one feature required for Profile 1, it is a Profile
0 player, even though it may be able to play many Profile 1 movies.

QuickTime 6 is a Profile 0 player. It can play any Profile 0 movie. QuickTime 6
also has some features of a Profile 1 player, such as the ability to handle higher
bitrate video, but it does not have the full Profile 1 feature set and cannot play
all Profile 1 movies.

QuickTime can create and play Profile 0 movies that use video at higher bitrates
than 64 kbit/second. If you know your movie will be played by QuickTime, you
may want to take advantage of the higher bitrates available, but be aware that
this produces files which are not ISO-compliant. Other Profile 0 players may not
be able to play these files, even though QuickTime can.

To ensure interoperability with other players, use only ISO-compliant MP4 files.

RTSP Instant-On Enhancement to Streaming 1

QuickTime 6 introduces a new feature in streaming: Instant-On. This feature
provides broadband users with quick access to streaming content, thus
reducing the wait before playback. Users with a broadband connection can
“scrub” through on-demand streams in real-time by using the time slider. The
playback is updated instantaneously, allowing you to locate precisely the
content that you want to view in a QuickTime movie.

This feature enables the nearly instantaneous start of streamed movies when the
available network bandwidth significantly exceeds the data rate of the target
media.

Users can enable this feature in the QuickTime Settings control panel (shown
below). The slider varies the amount of pre-buffering that QuickTime will do
from a maximum of 2x the movie data rate to a minimum of very little
pre-buffering.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

User Interface Changes 47
© Apple Computer, Inc July, 2002

User Interface Changes 1

There are some minor changes to the QuickTime Player user interface that are
introduced in QuickTime 6, as discussed in this section. These include the
following:

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

48 User Interface Changes

© Apple Computer, Inc July, 2002

■ The Channel button (below) that was marked “TV” in previous versions of
QuickTime is now marked with a “Q”.

■ The Hot Picks movie and the Channel pane have a new layout (below), with
channel categories on the left and a movie on the right. The list of channel
categories is now dynamic.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

JPEG 2000 Support 49
© Apple Computer, Inc July, 2002

■ The Favorites pane is no longer an alternate for the Channel pane. It is now a
stand-alone panel (shown below). Instead of icons, favorite movies are
shown as a list of file names or URLs.

■ The Favorites panel can be accessed only from the Favorites menu. There is
no longer a heart icon to switch between Channels and Favorites. Both can
now be displayed simultaneously if the user wishes.

■ There is a new menu item in QuickTime Player. Under File, there is now an
Open Recent > selection, with a submenu of the last 10 movies.

These changes should not affect programmers working with QuickTime at the
API level.

JPEG 2000 Support 1

QuickTime 6 includes support for JPEG 2000, a high-quality, still-image
compression and image coding standard that uses state of the art compression
techniques based on wavelet technology. QuickTime 6 provides support for
encoding, decoding, import, and export to the format.

The JPEG 2000 standard is based on discrete wavelet transform (DWT), scalar
quantization, context modeling, arithmetic coding and post-compression rate
allocation. The standard lends itself to a variety of uses, ranging from digital
photography to medical imaging to advanced digital scanning and printing.

For more information on the JPEG 2000 standard for still image coding, refer to

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

50 Flash 5 Support

© Apple Computer, Inc July, 2002

http://www.jpeg.org/JPEG2000.htm

Most notably, JPEG 2000 provides high compression efficiency––in many cases,
visually lossless compression at 1 bit per pixel or better.

Note that for this release of QuickTime 6, JPEG 2000 is only supported in
Mac OS X.

Flash 5 Support 1

QuickTime 6 includes several new and updated components related to
Macromedia Flash support in QuickTime. The Flash media handler and the
Flash movie importer have been updated, and a new Flash Properties panel has
been added to the QuickTime Player info panels.

New Flash Media Handler 1

The new Flash media handler supports Macromedia Flash files (also known as
SWF files) that conform to Flash 5 versions and earlier of the SWF specification.
(Previous releases of QuickTime supported files that conformed to Flash 4 and
earlier.) You should refer to Macromedia’s documentation for a complete listing
of the features added to Flash 5. The most significant additions include

■ greatly expanded ActionScript capabilities

■ HTML text rendering

■ XML data exchange

All these features work properly under the new Flash media handler––with a
few limitations. (Refer to the QuickTime 6 Release Notes, which specify those
limitations.)

SWF files opened by QuickTime-savvy applications are converted to QuickTime
movie files by the Flash movie importer, discussed in the next section. These
movie files consist of a single Flash track, whose media data is simply the data
in the original SWF file. Virtually all of these movie files play back in
QuickTime Player, in other QuickTime-savvy applications, or in the QuickTime
browser plug-in exactly as if the original SWF file had been opened using the
Flash Player application or the Flash browser plug-in.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Flash 5 Support 51
© Apple Computer, Inc July, 2002

Flash Movie Importer 1

The new Flash movie importer is “smarter” than the previous importer in
several ways. The principal change is that the new importer scans some or all of
the Flash file being imported to try to determine whether the file is set to
automatically start playing when it is opened. (Previous importers assumed
that all imported SWF files should be autoplayed.) Several other settings are
unchanged from earlier versions of the Flash importer: the play-all-frames
option is set to TRUE and the looping flag is set to FALSE.

New Flash Properties Info Panel 1

Flash tracks can be combined with other kinds of tracks in a QuickTime movie
file. This is especially useful when using controls in the Flash track (buttons,
sliders, etc.) to control the playback and settings of other tracks (video tracks,
sound tracks, VR tracks, etc.)

In this situation, the content author needs to be aware of a new consideration
that did not arise in earlier versions of the Flash media handler: version 5
ActionScripts can read the position of the cursor and/or the state of the mouse
button at any time. This means that some ActionScripts may respond to mouse
button clicks even if those clicks do not occur on some interactive element in the
Flash track. If the Flash media handler accepts and processes all clicks in the
track rectangle, then those clicks cannot be passed to tracks layered behind the
Flash track. This effectively prevents the user from interacting with sprite tracks
and QuickTime VR tracks layered behind the Flash track.

The new Flash media handler allows a movie author to decide on a per-track
basis whether all mouse button clicks are accepted and handled by that
particular instance of the Flash track or whether clicks that are not on an
interactive element in the track are passed to tracks layered behind it. The
setting for a specific Flash track can be adjusted using the new “Flash
Properties” info panel in QuickTime Player, shown in Figure 10.

This panel contains a single check box labeled “Mouse Capture Enabled”. If the
box is checked, then all mouse clicks are directed to the Flash track (unless some
track in front of the Flash track processes the click); if the box is unchecked, only
mouse button clicks on interactive elements in the Flash track are processed.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

52 Flash 5 Support

© Apple Computer, Inc July, 2002

Figure 10 The Flash Properties info panel in Mac OS X in QuickTime Player with
Mouse Capture Enabled box checked

When a Flash file is imported as a movie with a single Flash track,
mouse-capturing is enabled for that track. If you combine that track with other
tracks, you may need to adjust the mouse capture setting to achieve the proper
user experience.

Controlling Mouse Capturing Setting 1

The mouse capture setting of a Flash track is stored in the media properties
atom of the track.

The Movies.h header file contains the constant
kFlashTrackPropertyAcceptAllClicks to identify the atom type; the atom data is
a Boolean value, where TRUE means to accept all mouse button clicks and FALSE
means to accept only those mouse button clicks on an interactive element in the
Flash track.

The following snippet of code sets a Flash track to accept all clicks:

QTAtomContainer trackProperties = NULL;
Boolean acceptAllClicks = true;

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New APIs for Tasking QuickTime 53
© Apple Computer, Inc July, 2002

GetMediaPropertyAtom(flashMedia, &trackProperties);
if (trackProperties != NULL) {

QTInsertChild(trackProperties, 0,
kFlashTrackPropertyAcceptAllClicks, 1, 1,
sizeof(acceptAllClicks), &acceptAllClicks, nil);

SetMediaPropertyAtom(flashMedia, trackProperties);

QTDisposeAtomContainer(trackProperties);
}

New APIs for Tasking QuickTime 1

QuickTime 6 introduces a new tasking mechanism designed to improve
application performance and operation.

Periodically, applications have to give time to QuickTime by calling such
routines as MCIsPlayerEvent(), MCIdle(), MoviesTask(), or TaskMovie().
Typically, QuickTime developers ask the question, how often should I call a
particular routine? The answer most frequently given is, 10 to 20 times per
second. This works in most cases. But in many other cases, while an application
is tasking QuickTime 10 or 15 times per second, half the time QuickTime does
not really need to be called, and the application will just be sitting there,
spinning. As a consequence, there is an inefficient use of processor time.

In QuickTime 6, a new group of APIs are provided that improve QuickTime
tasking from an application’s point of view. These are

■ QTGetTimeUntilNextTask()

■ QTInstallNextTaskNeededSoonerCallback()

■ QTUninstallNextTaskNeededSoonerCallback()

For example, where an application once did this

while (true) {
WaitNextEvent(..., &event, 2, ...); // if no event pending, return a

// null event after
// 2/60 of a second

MCIsPlayerEvent(mc, &event);
}

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

54 New APIs for Tasking QuickTime

© Apple Computer, Inc July, 2002

it can now do something like this

UInt32 t;
while (true) {

QTGetTimeUntilNextTask(&t, 60); // how long in 60ths of a second?
WaitNextEvent(..., &event, t, ...);
MCIsPlayerEvent(mc, &event);

}

QTGetTimeUntilNextTask is a new API that lets you pass in a scale––for example,
1/60 of a second or 1/1000 of a second––and returns a duration, that is, the
number of 60ths or 1000ths (whatever you ask for) until the next time
QuickTime needs to be called.

For example, as shown in the code snippet above, on Mac OS 9 you would call
QTGetTimeUntilNextTask, passing in 60 because WaitNextEvent() wants ticks. It
will tell you how many 60ths of a second until QuickTime needs to be called
again. WaitNextEvent() will not return either until that amount of time has gone
by, in which case it will give you a NULL event, or an event took place, in
which case it will give you that event.

On Mac OS X, the recommended way to do this on a Carbon application is to
use the Carbon event loop timer, as discussed in the section “New Carbon
Movie Control” (page 69). This is a timer routine that you set up to be called
periodically from the Carbon event loop. You set a duration for how often you
want it to happen.

The following code snippet shows how you can use both QuickTime’s new
tasking mechanism and the Carbon event loop timer code. It also shows how to
use the new QTInstallNextTaskNeededSoonerCallback() API.

MyMovieIdlingTimer() is installed by the sample routine
InstallMovieIdlingEventLoopTimer() shown in the code snippet below. This
routine performs the actual work of idling the movies and/or movie controllers
that the application has in use.

static void MyMovieIdlingTimer(EventLoopTimerRef inTimer,
void *inUserData)

{
OSStatus error;

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New APIs for Tasking QuickTime 55
© Apple Computer, Inc July, 2002

long durationInMillis;
MyStatePtr myState = (MyStatePtr)inUserData; // Application's state

 // related to its list of movies

You insert the code here to idle the movies and/or movie controllers that the
application has in use––for example, calls to MCIdle().

// Ask the idling mechanism when we should fire the next time.
error = QTGetTimeUntilNextTask(&durationInMillis, 1000);

// 1000 == millisecond timescale

if (durationInMillis == 0) // When zero, pin the duration
 // to our minimum

durationInMillis = kMinimumIdleDurationInMillis;

// Reschedule the event loop timer
SetEventLoopTimerNextFireTime(myState->theEventTimer,

durationInMillis *
kEventDurationMillisecond);

}

TaskNeededSoonerCallback() is installed using the new
QTInstallNextTaskNeededSoonerCallback() to enable QuickTime to
awaken the application in order to reschedule some idle time between calls to
the event timer function.

static void TaskNeededSoonerCallback(TimeValue duration,
unsigned long flags,
void *refcon)

{
SetEventLoopTimerNextFireTime((EventLoopTimerRef)refcon,

 duration * kEventDurationMillisecond);
}

The InstallMovieIdlingEventLoopTimer() function performs the actual
installation of the Carbon event loop timer function. This is called once when
the first movie is opened. It also installs a TaskNeededSooner callback that the
Idle Manager calls when QuickTime needs your attention.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

56 New APIs for Tasking QuickTime

© Apple Computer, Inc July, 2002

static OSStatus InstallMovieIdlingEventLoopTimer(MyStatePtr myState)
{

OSStatus error;

Note that myState is a structure the application maintains to “remember” the
event loop timer reference, as well as the list of movies or movie controllers that
it will need to idle.

error = InstallEventLoopTimer(
GetMainEventLoop(),
0, // firedelay
kEventDurationMillisecond * kMinimumIdleDurationInMillis,

// interval
NewEventLoopTimerUPP(MyMovieIdlingTimer),
myState, // This will be passed to us when

// the timer fires
&myState->theEventTimer);

if (!error) {
// Install a callback that the Idle Manager will use when
// QuickTime needs to wake me up immediately
error = QTInstallNextTaskNeededSoonerCallback(
NewQTNextTaskNeededSoonerCallbackUPP(TaskNeededSoonerCallback),

1000, // Millisecond timescale
0, // No flags
(void*)myState->theEventTimer); // Our refcon, the

// callback will
// reschedule it

}

return error;
}

As shown in the above code snippet, when QuickTime decides that the next
task is needed sooner, it will call the QTInstallNextTaskNeededSoonerCallback
routine. Using that routine, you can reschedule your Carbon event loop timer.
This callback proc may be called from interrupt-time or called from another
thread on Mac OS X. You can call the Carbon API to reschedule the Carbon
event loop timer. When you install the callback, you tell it what scale you like,
and then when the callback comes, QuickTime will pass you a duration.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New APIs for Tasking QuickTime 57
© Apple Computer, Inc July, 2002

Often when you ask QTGetTimeUntilNextTask, it will return you a 0, which
means it needs to be tasked right away. It’s not recommended that you pass a 0
into WaitNextEvent(), for example, because what will happen is that you will
completely swamp the CPU. Passing in a 1 to WaitNextEvent() is a good
minimum.

QTGetTimeUntilNextTask 1

Provides the time in specified units, until QuickTime next needs to be called.

OSErr QTGetTimeUntilNextTask (long * duration,
long scale);

duration A pointer to the returned time to wait before tasking QuickTime
again.

scale The requested time scale.

return value Error code (for example, paramErr or
movieToolBoxUninitialized).

DISCUSSION

Using this routine, you pass in the scale that you’re interested in, whether it is a
60th of second (scale=60), or a 1000th of second (scale=1000). This call then
returns a duration that specifies how long you can wait before tasking
QuickTime again. In Mac OS X, with the Carbon event loop timer, you generally
pass in 1000 and get milliseconds in return, and then schedule your Carbon
event loop timer.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

58 New APIs for Tasking QuickTime

© Apple Computer, Inc July, 2002

QTInstallNextTaskNeededSoonerCallback 1

Installs a callback that is called when QuickTime changes its mind about when
it next needs to be tasked.

QTInstallNextTaskNeededSoonerCallback
(QTNextTaskNeededSoonerCallbackUPP callbackProc,
TimeScale scale,
unsigned long flags,
void * refcon);

callbackProc A callback procedure.

scale The time scale of the duration that will be passed to the callback.

flags Unused. Must be zero.

refcon A reference constant.

DISCUSSION

This routine installs a callback procedure that specifies when QuickTime next
needs to be tasked. The callback procedure may be called from interrupt-time or
on Mac OS X from another thread, so you must be careful not to do anything
that might cause race conditions. You can call the Carbon API to reschedule the
Carbon event loop timer from another thread.

You specify what scale you like, and when the callback is returned, it will pass
you a duration.

Note that you can install or uninstall more than one callback procedure if
necessary.

All callbacks will be called in sequence. You can also install the same callback
multiple time with different refcons. It will be called once with each refcon
value.

VERSION NOTES

Introduced in QuickTime 6.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New APIs for Tasking QuickTime 59
© Apple Computer, Inc July, 2002

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

QTUninstallNextTaskNeededSoonerCallback 1

Uninstalls your NextTaskNeededSooner callback procedure.

QTUninstallNextTaskNeededSoonerCallback
(QTNextTaskNeededSoonerCallbackUPP callbackProc,
void * refcon);

callbackProc A callback procedure.

refcon A reference constant.

DISCUSSION

This routine takes a callback procedure and your reference constant, so that you
can uninstall one instance of a callback you have installed more than once with
different refcons.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

60 The Idle Manager APIs

© Apple Computer, Inc July, 2002

The Idle Manager APIs 1

QuickTime 6 introduces a new group of Idle Manager APIs that let media
handlers, data handlers, and movie importers report their various QuickTime
idling needs. These new APIs, discussed in this section, include

■ QTIdleManagerSetNextIdleTime

■ QTIdleManagerSetNextIdleTimeNow

■ QTIdleManagerSetNextIdleTimeNever

■ QTIdleManagerSetNextIdleTimeDelta

■ MCSetIdleManager

■ MovieImportSetIdleManager

■ DataHSetIdleManager

■ MediaGGetIdleManager

■ MediaGSetIdleManager

The Idle Manager introduced in QuickTime 6 is an opaque object that your
component can make calls against.

In QuickTime 6, there are three types of components can get handed an Idle
Manager object: media handlers, data handlers, and movie importers (but only
certain types). Using these Idle Manager routines, components can specify
when they need to be idled.

To work with the Idle Manager object, you have to implement the appropriate
SetIdleManager component APIs, so that your component can be handed an Idle
Manager. When you are handed an Idle Manager, you will need to tell the Idle
Manager when you next need to be idled.

What does, when I next need to be idled, really mean? It means, if you idle me
before this time, I will do no work, so don’t bother. It’s a hint, not explicit
instructions. If you don’t tell it anything different, then you’ll continue to be
idled all the time because it still thinks you need one back then, which is now.

Note that media handlers also need to implement a GetIdleManager routine.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

The Idle Manager APIs 61
© Apple Computer, Inc July, 2002

Derived Media Handlers 1

Derived media handlers are so called because they derive much of their
functionality form the base (or generic) media handler. Historically, derived
media handlers have requested idles from the generic media handler by means
of flags passed to MediaSetHandlerCapabilities. There are three basic modes the
derived media handler can request:

1. Don’t idle me (noIdle).

2. Idle me once per sample in my track (0). No flags are set.

3. Idle me all the time (noScheduler, wantsTime, or both).

These modes can be changed at any time by calling
MediaSetHandlerCapabilities again.

Derived media handlers that only use modes 1 and 2 don’t need to do anything
with Idle Management. All their Idle Management will be handled for them by
the generic media handler. They should not implement MediaGSetIdleManager or
MediaGGetIdleManager.

Derived media handlers that currently use mode 3, but would like the ability to
throttle back the idle rate, should implement MediaGSetIdleManager and
MediaGGetIdleManager. They can then use various Idle Manager routines to tell
QuickTime when they would like to be idled next.

MediaGGetIdleManager 1

Retrieves the Idle Manager object from a derived media handler.

MediaGGetIdleManager (MediaHandler mh,
IdleManager * pim);

mh A media handler component instance.

pim A pointer to an idle manager that the media handler will fill in.

DISCUSSION

This routine must be implemented by a derived media handler that wants to
report its idling needs.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

62 The Idle Manager APIs

© Apple Computer, Inc July, 2002

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

MediaGSetIdleManager 1

Gives an Idle Manager object to a derived media handler, so it can report its
idling needs.

MediaGSetIdleManager (MediaHandler mh,
IdleManager im);

mh A media handler component instance.

im An idle manager.

DISCUSSION

This routine must be implemented by a derived media handler that wants to
report its idling needs.

After receiving an idle manager by means of the above calls, a derived media
handler can call the following routines to tell QuickTime when they need to be
idled next:

■ QTIdleManagerSetNextIdleTime

■ QTIdleManagerSetNextIdleTimeNever

■ QTIdleManagerSetNextIdleTimeNow

■ QTIdleManagerSetNextIdleTimeDelta

VERSION NOTES

Introduced in QuickTime 6.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

The Idle Manager APIs 63
© Apple Computer, Inc July, 2002

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

Three Useful Idle Manager Calls 1

There are three useful Idle Manager calls you should consider:

1. QTIdleManagerSetNextIdleTimeNow, which specifies that your component
needs an idle now. The only parameter is your Idle Manager.

2. QTIdleManagerSetNextIdleTimeNever, which puts your component into a
mode where you’re not going to need any idles until further notice. Don’t
idle me.

3. QTIdleManagerSetNextIdleTimeDelta, which says I need to be idled this
amount of time from now. This will get you one idle. If you don’t tell it
anything different, then you’ll continue to be idled all the time because he
still thinks you need one back then, which is now. Every time you get idled,
you need to tell it again when your next idle needs to be. This call will you
tell it how long when you pass in a duration, but then you have to tell it what
the units of that duration are.

QTIdleManagerSetNextIdleTimeNow 1

Specifies that your component needs to be idled now.

QTIdleManagerSetNextIdleTimeNow (IdleManager im);

im An idle manager.

DISCUSSION

This routine specifies that the calling component needs to be idled right away,
that is, continuously, until further notice.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

64 The Idle Manager APIs

© Apple Computer, Inc July, 2002

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

QTIdleManagerSetNextIdleTimeNever 1

Specifies that your component will not need to be idled until further notice.

QTIdleManagerSetNextIdleTimeNever (IdleManager im);

im An idle manager.

DISCUSSION

This routine specifies that your component should not be idled.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

QTIdleManagerSetNextIdleTimeDelta 1

Specifies that your component needs to be idled a certain amount of time from
now––for example, a quarter of second from now, or three seconds from now.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

The Idle Manager APIs 65
© Apple Computer, Inc July, 2002

QTIdleManagerSetNextIdleTimeDelta (IdleManager im,
TimeValue duration,
TimeScale scale);

im An idle manager.

duration The time from now in the scale specified.

scale The time scale.

DISCUSSION

This routine lets you pass in a duration and a scale. For example, if you need an
idle a half second from now, you can pass in a duration of 500 and a scale of
1000, or a pass in a duration of 1 and scale of 2. In both cases, this is a half
second. Typically, developers will have a time scale they are used to working in,
such as milliseconds or 60ths of a second.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

General Purpose Idle Manager API 1

There is a more general purpose Idle Manager call for specifying absolute
wallclock time of the next required idle.

QTIdleManagerSetNextIdleTime can be called to do this, passing in a fully filled
out TimeRecord, using QuickTime’s wallclock timebase. Note that any derived
media handlers that use this call may need to do their computations in track
time, and then convert to wallclock time, using ConvertTime. The wallclock
timebase can be found by calling QTGetWallClockTimeBase.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

66 The Idle Manager APIs

© Apple Computer, Inc July, 2002

QTIdleManagerSetNextIdleTime 1

Specifies the next time to idle.

QTIdleManagerSetNextIdleTime (IdleManager im,
TimeRecord * nextIdle);

im An idle manager.

nextIdle A pointer to a TimeRecord containing the wallclock time when
the calling component would like to be idled.

DISCUSSION

If your component needs to call QTIdleManagerSetNextIdleTime, you need to do
wallclock time calculations, so you need to call QTGetWallClockTimeBase.

QTGetWallClockTimeBase (TimeBase * wallClockTimeBase)

In addition, you may need to call ConvertTime() in order to convert from track
time or media time to wallclock time, and ConvertTimeScale() in order to
convert to the timescale you like to work in.

After receiving an idle manager by means of the above calls, a data handler can
call the following routines to tell QuickTime when they need to be idled next:

■ QTIdleManagerSetNextIdleTime

■ QTIdleManagerSetNextIdleTimeNever

■ QTIdleManagerSetNextIdleTimeNow

■ QTIdleManagerSetNextIdleTimeDelta

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

The Idle Manager APIs 67
© Apple Computer, Inc July, 2002

Data Handlers 1

Certain data handlers support scheduling reads in the future. These data
handlers implement DataHTask, so that they will have an opportunity to start
that read sometime later. These data handlers can throttle back the calls to
DataHTask by implementing DataHSetIdleManager, and using the Idle Manager
calls to say when they want to be idled next.

DataHSetIdleManager 1

Gives an Idle Manager object to a data handler, so it can report its idling needs.

DataHSetIdleManager (DataHandler dh,
 IdleManager im);

dh A data handler component instance.

im An idle manager.

DISCUSSION

This routine must be implemented by a data handler that wants to report its
idling needs.

After receiving an idle manager by means of the above calls, a data handler can
call the following routines to tell QuickTime when they need to be idled next:

■ QTIdleManagerSetNextIdleTime

■ QTIdleManagerSetNextIdleTimeNever

■ QTIdleManagerSetNextIdleTimeNow

■ QTIdleManagerSetNextIdleTimeDelta

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

68 The Idle Manager APIs

© Apple Computer, Inc July, 2002

Carbon status: Supported

Movie Importers 1

In general, movie importers don’t get idled. Typically, a movie importer just
examines a file, scans it, and then creates a movie that will point at the file and
describe how to play it. The media data is in that file, but the movie itself is in
memory.

There is a special kind of movie importer component that remains open to do
further work after the movie is constructed. These importers implement
MovieImportIdle. These “idling importers” can throttle back their idles by
implementing MovieImportSetIdleManager, and then using the IdleManager calls
to say when they want to be idled next.

MovieImportSetIdleManager 1

Gives an Idle Manager object to a movie importer component, so it can report
its idling needs.

MovieImportSetIdleManager (MovieImportComponent ci,
IdleManager im);

ci A movie importer component instance.

im An idle manager.

DISCUSSION

This routine must be implemented by a movie importer that wants to report its
idling needs.

VERSION NOTES

Introduced in QuickTime 6.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Carbon Movie Control 69
© Apple Computer, Inc July, 2002

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

New Carbon Movie Control 1

QuickTime 6 for Mac OS X introduces the Carbon Movie Control. This
mechanism makes the process of using QuickTime within a Carbon
Event-based application easier and faster. This is accomplished by using a
single API that can be shared among all such applications.

This API accepts a movie and a window and will construct a control containing
a standard movie controller. The control can then act as a Carbon Event target,
receiving Carbon Events and dispatching them to its movie controller. Using
this mechanism, an application does not need to use WaitNextEvent() and calls
to MCIsPlayerEvent(). In addition, the movie controller is automatically idled by
means of an event loop timer, using the Idle Manager to optimize idling
frequency.

Background 1

QuickTime movie playback APIs have traditionally been dependent on the
classic Macintosh application paradigm, i.e., the WaitNextEvent() loop. In this
loop, an application delegates events to a movie’s Movie Controller (if present)
and shares some of its idle time with QuickTime, which results in “idling” of
movies. In the cooperatively scheduled world of Mac OS 9 and earlier versions
of the Macintosh operating system, this scheme worked well.

In Mac OS X, however, a new application paradigm was introduced. This
paradigm depends on Carbon Events and associated handlers to communicate
user events to the application. Older models that rely on periodic polling are
replaced by the more “tunable” event loop timer mechanism, which enables an
application to have greater precision over the frequency of idling.

As a consequence, application developers may need to construct event handlers
for their windows to funnel events to their Movie Controllers and create event
loop timers to “idle” their movies.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

70 New Carbon Movie Control

© Apple Computer, Inc July, 2002

How It Works––An Event Target 1

The Carbon Movie Control is implemented as a custom control, which installs
an event handler to handle the Carbon Events sent to controls. When a Carbon
Movie Control is created for a movie, a movie controller is also created. The
movie control then directs User Interface events to this movie controller.

The application can install event handlers on the Carbon Movie Control to
handle such things as contextual menu clicks or to intercept events to do special
processing. Control Manager calls can be made as well. For example, the
GetControlBounds() and SetControlBounds() functions can be used to obtain or
modify the control’s size and location.

Providing Time to Movies 1

The Carbon Movie Control’s custom control implementation takes care of all
event routing to the movie. In order to distribute time to these movies, an event
loop timer is set up which “idles” all movie controllers associated with Carbon
Movie Controls within the application. The frequency of this timer is set using
information it gets from the QuickTime Task Management APIs, discussed in
the section “New APIs for Tasking QuickTime” (page 53). Thus, the amount of
time devoted to movie processing is minimized.

Support for Editing 1

The Carbon Movie Control also supports basic movie editing features, such as
cut, copy, paste, and clear, and performs the work of updating the Edit menu,
enabling or disabling editing command items as appropriate.

Interface 1

The interface for the Carbon Movie Control feature is a single API routine:

OSErr CreateMovieControl (
WindowRef theWindow,
Rect *localRect,
Movie theMovie,
UInt32 options,
ControlRef *returnedControl);

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Carbon Movie Control 71
© Apple Computer, Inc July, 2002

theWindow The window in which the control is placed.

localRect The rectangle in the local coordinates of the window in which
the movie control is placed. If NULL is passed for localRect, the
movie control is positioned at 0,0 within the window and will
have the natural dimensions of the movie, plus height of the
movie controls, if visible. If the localRect has 0 height and
width (top == bottom, left == right) it is interpreted as an anchor
point and the top left point of the movie control will be located
at this position. Its height and width will be as in the NULL
rectangle case. For all other cases of rectangles, the movie
control is centered within the rectangle by default and will be
sized to fit within it while maintaining the movie’s aspect ratio.

theMovie The movie to be displayed within the movie control.

options A bitmask containing zero or more option bits:

kMovieControlOptionHideController

The movie controller is hidden when the movie
control is drawn.

kMovieControlOptionLocateTopLeft

The movie is pinned to the top left of the
localRect rather then being centered within it.

kMovieControlOptionEnableEditing

Allows programmatic editing of the movie and
enables drag and drop.

kMovieControlOptionHandleEditingHI

Installs event handler for Edit menu commands
and menu updating (also asserts
kMovieControlOptionEnableEditing).

kMovieControlOptionSetKeysEnabled

Allows the movie control to react to keystrokes
and participate in the keyboard focus mechanism
within the window.

kMovieControlOptionManuallyIdled

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

72 New Carbon Movie Control

© Apple Computer, Inc July, 2002

Rather than being idled by the movie control
event loop timer, this movie control is idled by
the application, manually.

returnedControl

This is the Movie Control, suitable for passing to Control
Manager APIs.

DISCUSSION

This routine returns an error if there is a problem with one of the parameters or
if an error occurred while creating the underlying movie controller or the
custom control itself. If an error is returned, the value of returnedControl is
undefined.

The control can be deleted by calling DisposeControl(). Note that the control is
automatically disposed of if the enclosing window is destroyed. Note, too, that
the underlying movie controller is disposed of when the control is deleted.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Supported on Mac OS X

Access to Underpinnings 1

Once a movie control is created, you can access its associated movie, its
underlying movie controller or change certain options using the
GetControlData() and SetControlData() routines.

The following are the selectors that can be passed to these control manager
functions:

kMovieControlDataMovieController

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Sprite API Changes 73
© Apple Computer, Inc July, 2002

Use with GetControlData() to obtain the movie
controller. This allows the application access to
more features of QuickTime and finer control
over aspects of movie playback and editing.
IMPORTANT NOTE: Do not dispose of this movie
controller; it is owned by the movie control it is
associated with. You also must not use
MCSetControllerAttached() to detach the
controller from the movie.

kMovieControlDataMovie

A GetControlData() convenience to obtain the
movie associated with a movie control after its
creation.

kMovieControlDataManualIdling

Used with GetControlData() and
SetConrolData() to obtain and modify the state
of the movie control’s idling behavior. By
default, all movie controls are given time by the
movie control event loop timer. Setting this
Boolean item to TRUE will allow the application to
manually idle the movie using MCIdle().

Sprite API Changes 1

QuickTime 6 introduces a new group of APIs that enable software application
developers to request, display, and manage images that are hosted outside of
the Movie in which they are used.

Loading Images into a Sprite Track 1

Each sprite in a sprite track has an image associated to it. Typically, that image
is visible to the user when the movie is presented. A Sprite track can have a
number of images in it and you can assign another image to a sprite by setting
its image index.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

74 Sprite API Changes

© Apple Computer, Inc July, 2002

In general, many of the images that could be used in interactive Web content are
simultaneously being integrated into HTML, perhaps updated by server-side
scripts, created by art departments in larger production teams, or are simply not
available during the Movie authorship process. In earlier versions of
QuickTime, it was not possible for a movie author to manage the dynamic
loading and processing of sprite images. Images had to be integrated into the
movie when it was generated.

Now, in QuickTime 6, with two simple sprite track wired actions (discussed in
the section “New Sprite Actions” (page 83)), the movie author can load any
image format supported by QuickTime, either from a local or remote source,
and manage its display and persistence during the playback of a movie. Sprite
images, like sprites before them, now have two unique identifiers associated
with them to help movie creators manage many images over the course of a
movie’s lifetime, index and ID.

New Sprite APIs 1

The following APIs, discussed in this section, are new in QuickTime 6.

SpriteMediaNewImage 1

Creates a new sprite image.

ComponentResult SpriteMediaNewImage (// IV-2677
 MediaHandler mh, // IV-2677
 Handle dataRef, // IV-2683
 OSType dataRefType, // IV-2695
 QTATomID desiredID);// IV-2675

mh The sprite media handler for this operation.

dataRef A pointer to the url dataRef or an alias that references the image
to be added to the sprite track.

dataRefType A FourCharCode describing the dataRef parameter. For example,
you can use URLDataHandlerSubType if the dataRef is a URL.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Sprite API Changes 75
© Apple Computer, Inc July, 2002

QTAtomID A long used to request a unique ID identifier for the image. If
the requested ID is in use, the call fails. If a 0 is passed in,
NewImage will assign the next available (incremental) integer
ID––which is usually the same as the next available index,
unless that ID has been previously assigned.

function result If successful, the new image can be used by the target sprite
track like any other sprite image. The image is referenced by the
next available image index, equal to the number of images in the
track before the call was made + 1, and by the ID that was
requested via parameter or was automatically assigned.

SpriteMediaDisposeImage 1

Frees the memory allocated for a new sprite image, and removes that image
from the track.

ComponentResult SpriteMediaDisposeImage (// IV-2677
 MediaHandler mh, // IV-2677
 short imageIndex);// IV-2687

mh The sprite media handler for this operation.

imageIndex The index of a sprite image previously acquired via a
SpriteMediaNewImage call.

Function Result: The image disposed of is no longer available to the sprite track,
and the image index location will remain “empty” for the duration of the
current key sample.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

76 Sprite API Changes

© Apple Computer, Inc July, 2002

SpriteMediaImageIndexToID 1

Returns the ID of a particular image given the index of that image.

ComponentResult SpriteMediaImage (// IV-2677
 MediaHandler mh, // IV-2677
 short imageIndex,
 QTAtomID *imageID); // IV-2687

mh The sprite media handler for this operation.

imageIndex The index of a sprite image.

imageID On return, a pointer to the ID of the image.

function result You can access Movie Toolbox error returns through
GetMoviesError (I-505) and GetMoviesStickyError (I-506), as well
as in the function result. See Error Codes (IV-2718).

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

SpriteMediaImageIDToIndex 1

Returns the index of a particular image, given the ID of that image.

ComponentResult SpriteMediaImage (// IV-2677
 MediaHandler mh, // IV-2677
 QTAtomID imageID, // IV-2687
 short *imageIndex);

mh The sprite media handler for this operation.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Sprite API Changes 77
© Apple Computer, Inc July, 2002

imageID The ID of a sprite image.

imageIndex On return, a pointer to the index of the image.

Function Result: If no image is found with a corresponding ID, the image index
returned will be 0.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

Sprite Hit-Testing Mode 1

When a sprite is clicked in a sprite track, it “receives” the mouse click. However,
there are times when you may want to have sprites that do not receive a mouse
click, and instead, you want the mouse click to “pass through” that sprite (and
on to another sprite or perhaps another track behind the sprite track). In earlier
versions of QuickTime, this was not possible.

In QuickTime 6, however, this behavior––passing a mouse click through a
sprite––can be controlled through a new sprite property. In addition, you can
control all the sprites in a sprite track through a new sprite track property.

Controlling Hit-Testing Mode of an Individual Sprite 1

In QuickTime 6, each sprite has a property:

canBeHitTested

This property can have a Boolean value of either TRUE or FALSE.

When a sprite is created, this property is defaulted to TRUE. The property is an
actual property of sprites within a sprite world. Thus, this property can be set
and retrieved by means of sprite world calls directly: SetSpriteProperty and
GetSpriteProperty, using the kSpritePropertyCanBeHitTested (defined in
Movies.h) constant and passing and receiving the property value of TRUE or

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

78 Sprite API Changes

© Apple Computer, Inc July, 2002

FALSE. Further, when calling a sprite world’s SpriteHitTest or
SpriteWorldHitTest routines, you can pass the new flag
spriteHitTestTreatAllSpritesAsHitTestable to have SpriteWorld’s hit testing
ignore the individual sprites’ own canBeHitTested property and make all sprites
hit testable. Note there is no flag for making all sprites not hit testable.

Since sprite media uses sprite world, this property can also be manipulated by
means of SpriteMedia calls: SpriteSetSpriteProperty and
SpriteGetSpriteProperty, passing kSpritePropertyCanBeHitTested and passing/
receiving the property value of TRUE or FALSE.

Finally, this property can be manipulated by means of non-primary source data
using the kTrackModifierObjectCanBeHitTested (also defined in Movies.h)
constant.

Controlling Hit-Testing Mode of a Sprite Track 1

Sprite Tracks in QuickTime have a property:

allSpritesHitTestingMode

It can have three values, as defined in MovieToolbox.h:

kSpriteHitTestUseSpritesOwnPropertiesMode = 0,
kSpriteHitTestTreatAllSpritesAsHitTestableMode = 1,
kSpriteHitTestTreatAllSpritesAsNotHitTestableMode = 2

When a sprite track is created, this property defaults to
kSpriteHitTestUseSpritesOwnPropertiesMode.

This property can be specified in the media by having a QTAtom of type
kSpriteTrackPropertyAllSpritesHitTestingMode, a size of short, and a value of
0, 1 or 2.

Also, this property can be set at runtime by means of SpriteSetSpriteProperty,
which normally is used to set properties of sprites, but has been overloaded to
now be able to set track properties. To do so, the spriteID should be equal to
FOUR_CHAR_CODE('Trck'), the property type should be
kSpriteTrackPropertyAllSpritesHitTestingMode and then the property value
should be 0, 1, or 2.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Sprite API Changes 79
© Apple Computer, Inc July, 2002

Correspondingly, the track property can be retrieved via
SpriteGetSpriteProperty with a sprite ID of FOUR_CHAR_CODE('Trck') and a
property type of kSpriteTrackPropertyAllSpritesHitTestingMode.

Handling Mouse Clicks 1

When a mouse click occurs within a sprite track, the sprite media handler will
first examine its kSpriteTrackPropertyAllSpritesHitTestingMode property to see
how to handle the click.

If the property is set to kSpriteHitTestUseSpritesOwnPropertiesMode, the sprite
media handler will then use the individual hit testing property
kSpritePropertyCanBeHitTested of the sprite clicked on to determine if the sprite
will “receive” the click or not. If not (i.e., the sprite’s
kSpritePropertyCanBeHitTested property is FALSE), and the mouse click is over
another sprite, the media handler will then consider that sprite’s
kSpritePropertyCanBeHitTested property and, if TRUE, will have that sprite
receive the mouse click. If FALSE, then the process continues with other sprites
under the mouse until one receives it or there are no further sprites at the
location of the mouse click. If none, the sprite media handler will inform
QuickTime it does not wish to handle the mouse click at all, which will then
propagate the mouse click to the Track underneath it in the movie.

If the kSpriteTrackPropertyAllSpritesHitTestingMode property of a Sprite Track
is set to kSpriteHitTestTreatAllSpritesAsHitTestableMode, then the sprite
media handler will ignore the kSpritePropertyCanBeHitTested sprite properties
of all sprites within the track and instead consider all the sprites as being able to
receive mouse clicks.

If the kSpriteTrackPropertyAllSpritesHitTestingMode property of a Sprite Track
is set to kSpriteHitTestTreatAllSpritesAsNotHitTestableMode, then the sprite
media handler will ignore the kSpritePropertyCanBeHitTested sprite properties
of all sprites within the track and instead consider all the sprites as being unable
to receive mouse clicks.

Sprite Track Setting Enhancements 1

A Sprite Track enhancement is provided in QuickTime 6 that gives content
creators, primarily, and users, secondarily, greater flexibility and control over
the pixel depth of the offscreen Graphics World (GWorld) that a Sprite Track
utilizes for the composition and management of its sprites.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

80 Sprite API Changes

© Apple Computer, Inc July, 2002

Limited Control of Offscreen Bit Depth 1

In earlier versions of QuickTime, there was a limited amount of control a
content creator or user had over the offscreen bit depth. In the QuickTime
Player Properties 2 Info Panel of a Sprite Track, you could choose one of these
options:

■ Best Depth. (Have the Sprite Track determine
empirically the best depth for the track)

■ 256. (8-bit Pixels)

■ Thousands. (16-bit Pixels

■ Millions+. (32-bit Pixels)

Each option is at best a suggestion to the Sprite Track as to what the offscreen
bit depth should be. Even though, for example, 256 is selected, the Sprite Track
might, depending on various parameters––such as monitor bit depth, memory
constraints, track or sprite graphics modes––create an 8-bit offscreen, a 16-bit
offscreen or even a 32-bit offscreen graphics world.

While this may at times yield better visual results, it also may result in poor
memory usage, degraded performance, or even worse––a visual result not
intended by the content creator.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Sprite API Changes 81
© Apple Computer, Inc July, 2002

Although such a suggestive approach makes sense for the Best Depth setting
where the user is explicitly asking the Sprite Track to make such a decision, it
may be counter-productive for the other three available choices.

New Preferred Bit Depth Info Panel 1

QuickTime 6 now provides users with greater control and flexibility over the
depth of the Sprite Track offscreen graphics world. To accomplish this,
QuickTime 6 has added a new mode, called Actual Depth, that has the same
four options as Best Depth, 256, Thousands and Millions+.

Note that for purposes of backward compatibility, QuickTime also maintains
the old method, which is called Preferred Mode.

The difference between Actual and Preferred modes is that in Actual Mode, a
choice of 256, Thousands or Millions+ dictates that the Sprite Track offscreen
depth be exactly as chosen. This provides explicit choice and control over image
quality, performance and memory usage.

The option of Best Depth under Actual Mode is analogous to Best Depth under
preferred Mode: although the algorithms differ slightly, both modes allow the
Sprite Track to determine the offscreen bit depth according to what is best
under the current circumstances.

Switching Between Modes 1

A user can switch any sprite movie from Preferred Mode to Actual Mode and
from Actual Mode to Preferred Mode by holding down the Option Key on
Mac OS 9 or Mac OS X, or the Alt Key on Windows while clicking the Set button
in the Properties 2 Info Panel and subsequently clicking the OK button in the
dialog that comes up and allows you to choose a setting. If you choose Cancel
in the dialog, there is no change in mode.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

82 Sprite API Changes

© Apple Computer, Inc July, 2002

The user can tell if a Sprite Track is in Actual or Preferred mode, as the label in
the Info Panel switches on the fly between “Actual Depth:” and “Preferred
Depth:”.

A New Sprite Track Property 1

In order to support the new Actual Depth mode, a new Sprite Track Property
has been added:

kSpriteTrackPropertyPreferredDepthInterpretationMode = 109

This property is optional. If the property is absent, the Sprite Track operates in
Preferred Depth mode.

If this property is present, it has a single value, of size short, that can be one of
these values:

■ kSpriteTrackPreferredDepthCompatibilityMode = 0

■ kSpriteTrackPreferredDepthModernMode = 1

If the value of this property is kSpriteTrackPreferredDepthCompatibilityMode,
then the Sprite Track operates in Preferred Depth mode. However, if the value is
kSpriteTrackPreferredDepthModernMode, then the Sprite Track operates in the
new Actual Depth Mode.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Wired Actions and Operands 83
© Apple Computer, Inc July, 2002

Using the SpriteSetSpriteProperty API 1

To programmatically set the Sprite Track depth mode, you use the
SpriteSetSpriteProperty call of the Sprite Media Handler:

pascal ComponentResult SpriteSetSpriteProperty(Media media,
QTAtomID spriteID,
long propertyType,
void *propertyValue);

Pass a four character code of ‘Trck’ for the spriteID and specify
kSpriteTrackPropertyPreferredDepthInterpretationMode as the property type.
Finally, pass a value of kSpriteTrackPreferredDepthCompatibilityMode or
KSpriteTrackPreferredDepthModernMode directly as the propertyValue.

For example, to Set a Sprite Track to use the Actual Depth mode:

error = SpriteSetSpriteProperty(SpriteMedia,
‘Trck’,
kSpriteTrackPropertyPreferredDepthInterpretationMode
kSpriteTrackPreferredDepthModernMode,);

New Wired Actions and Operands 1

The following wired actions and operands are new in QuickTime 6.

New Sprite Actions 1

The following new actions enable interactive content creators to request,
display, and manage images hosted outside of the Movie in which they are
used.

kActionSpriteTrackNewImage = 7182, /* (C string imageURL, QTAtomID
 desiredID) */

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

84 New Wired Actions and Operands

© Apple Computer, Inc July, 2002

Loads an image and gives it the next available image index, and
the desired ID, if available.

kActionSpriteTrackDisposeImage = 7183, /* (short imageIndex) */

Disposes of an image that has previously been loaded and has
the supplied image index.

The two new actions, kActionSpriteTrackNewImage and
kActionSpriteTrackDisposeImage, always interact with the images loaded at
runtime, and should always be used to reference indexes higher than those of
the images that are integrated within the movie when it is created.

kActionSpriteTrackNewImage takes as a parameter the URL of the image to be
requested and an ID with which you can reference that image. Passing an ID of
0 will prompt this action to assign the next available (unique) ID greater than
the current image count. In comparison, the index assigned will always be the
integer one greater than the current image count.

For example, a target sprite track has 2 images with index/ID pairs of 1/1 and
2/777, respectively, before this action is executed. The new image action is
called with “image.jpg” as the URL and a desiredID of 6. Assuming the URL is
valid, the new image action will be given the index 3 and honor the requested
ID of 6. If the URL is invalid, or if ID 1 or 777 is requested, index 3 will not be
assigned nor will any ID, because the image has failed to load. A subsequent
call of kActionSpriteTrackNewImage will attempt to use index 3 again. For this
reason, it is advantageous for the movie author to maintain a tally or query the
number of images in the Track (kOperandSpriteTrackNumImages) to predict the
new index.

kActionSpriteTrackDisposeImage takes as a parameter the index of the image to
be released from memory. The image specified by the index is required to be
one loaded through kActionSpriteTrackNewImage. In other words, the index is
required to be one previously assigned by a kActionSpriteTrackNewImage.
Images authored into the movie, either as data or by reference, cannot be
disposed of in this way. Note also that subsequent calls to
kActionSpriteTrackNewImage will not fill the “holes” left by
kActionSpriteTrackDisposeImage, but will continue to increment the index.
Thus, kActionSpriteTrackDisposeImage exists to enable movie authors to
manage the memory usage of a movie during playback––for example, when the
movie may only need an externally referenced image temporarily.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Wired Actions and Operands 85
© Apple Computer, Inc July, 2002

New Sprite Operands 1

Two new operands have been added in QuickTime 6 to allow script authors to
reference images by either index or ID. These are

kOperandSpriteTrackImageIDByIndex = 3107 /* (short imageIndex) */

Returns the ID for an image that has the index supplied as the
parameter.

kOperandSpriteTrackImageIndexByID = 3108 /* (QTAtomID imageID) *

Returns the index of the image whose ID is equal to that
supplied as the parameter. This operand will return a 0 if no
image index matches the ID given.

New Wired Actions and Operands for Chapter Lists 1

The following new actions and operands allow you to have access to chapter
names in the chapter track and their corresponding times in the movie.

They conceptually extend what you can do with kActionMovieGoToTimeByName.
You can navigate through chapters by index to pick one and go to the time
associated to it. You can get the name of a chapter from index, or get the index
of a chapter from name.

Going To a Chapter by Index 1

The following actions go to the time associated to a chapter. The chapter is
specified relative to the current chapter or by index.

kActionMovieGotoNextChapter = 1039, /* no params */

Changes the movie time to the start of the next chapter.

kActionMovieGotoPreviousChapter = 1040, /* no params */

Changes the movie time to the start of the previous chapter.

kActionMovieGotoFirstChapter = 1041, /* no params */

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

86 New Wired Actions and Operands

© Apple Computer, Inc July, 2002

Changes the movie time to the start of the first chapter.

kActionMovieGotoLastChapter = 1042, /* no params */

Changes the movie time to the start of the last chapter.

kActionMovieGotoChapterByIndex = 1043, /* (short index) */

Changes the movie time to the start of the nth chapter

Getting the Name and the Index of a Chapter 1

The following operands allow you to get the name or the index of a chapter.
There is also an operand that returns the number of chapters in the movie.

kOperandMovieChapterCount = 1038,

Gets the chapter count.

kOperandMovieChapterIndex = 1039,

Gets the current chapter index.

kOperandMovieChapterName = 1040,

Gets the current chapter name.

kOperandMovieChapterNameByIndex = 1041, /* (short index) */

Gets the name of the nth chapter.

kOperandMovieChapterIndexByName = 1042, /* (cstring name) */

Gets the index of the chapter with passed in name.

New Wired Actions and Operands for Sprites and Sprite Tracks 1

The following new actions and operands allow you to have access to the sprite
property and the sprite track property described above, having full control over
how the sprites in a sprite track interact with mouse clicks.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Wired Actions and Operands 87
© Apple Computer, Inc July, 2002

Sprite Hit Testing Property, Actions, and Operands 1

A wired action and a wired operand let you get and set the sprite hit testing
property.

kActionSpriteSetCanBeHitTested = 3094, /* (short flag) */

Sets the value of the hit testing property.

kOperandSpriteCanBeHitTested = 3105,

Returns the value of the hit-testing property.

Miscellaneous Wired Actions and Operands 1

A few miscellaneous new actions and operands have been added in
QuickTime 6.

kQTEventKeyUp Event Type Added 1

QuickTime 6 adds the kQTEventKeyUp event type that can be used in wired
actions. It corresponds to key-up events on the keyboard. Applications may
need to take special actions in order to receive key-up events (which are then
passed to a movie controller using MCIsPlayerEvent). For example, Carbon
applications that use the classic event model may need to call:

SetEventMask(everyEvent);

since by default the OS does not report key-up events to an application.
Similarly, Carbon-event-based applications may need to register a handler for
kEventRawKeyUp.

The movie controller also now supports the mcActionKeyUp action.

Random Seed 1

The following action can be used in conjunction with kOperandRandom.

kActionSetRandomSeed = 6164, /* long randomSeed */

Sets the QuickDraw seed value which is starting point for any
subsequent kOperandRandom calls.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

88 New Wired Actions and Operands

© Apple Computer, Inc July, 2002

QTVR Object Actions and Operands 1

QTVR has the concept of view states for object movies depending on the mouse
button. These are alternate images that are displayed depending on the state of
the mouse button.

The following actions and operands provide control of the view state:

kActionQTVRSetViewState = 4109, /* long viewStateType, short state */

Sets the object node's state type to the new state value.

kOperandQTVRViewStateCount = 4103,

Gets the count of view states for an object node.

kOperandQTVRViewState = 4104, /* long viewStateType */

Gets the value of a view state.

The valid view state types are defined as follows:

typedef UInt32 QTVRViewStateType;
enum {

kQTVRDefault = 0,
kQTVRCurrent = 2,
kQTVRMouseDown = 3

};

Additional New Actions and Operands 1

The following are new actions and operands available in QuickTime 6:

kActionMovieSetScale = 1044, /* (Fixed xScale, Fixed yScale) */

Sets the target movie’s scale. This action operates in a similar
manner to QTPlayer’s menu commands for setting the movie’s
size:

 Menu kActionMovieSetScale parameters

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Wired Actions and Operands 89
© Apple Computer, Inc July, 2002

 Half Size : 0.5, 0.5
Normal Size : 1.0, 1.0
Double Size : 2.0, 2.0

This new action allows the scriptor to scale a movie by means of an action
(similar to the QTPlayer’s menu commands), and provides a way to enlarge
skinned movies.

The following new action allows the scriptor to query the movie for the
predefined annotations that begin with the copyright symbol.

kOperandMovieAnnotation = 1043, /* (c string requested, long flags) */

"flags"

 1 : return data as a string
2 : return data as xml formatted string

"requested"

as string: a single annotation type, that is, "qt-userdata-cpy" as
XML: an empty string means return all appropriate user data as
an XML-formatted string. Otherwise, it is a comma-deliminated
list of the specific user data that the scriptor wants returned as
an XML-formatted string.

Because the copyright symbol is only in the Macintosh font table, the scriptor
will need to prefix requests with "qt-userdata-". If, for example, the request is
for '©nam', the scriptor must pass in "qt-userdata-nam".

Other examples:

 '©cpy' : "qt-userdata-cpy"
 '©aut' : "qt-userdata-aut"

The following new operands in QuickTime 6 allow scripts to capture what the
controller is displaying for streamed movies that are connecting, buffering, and
so on.

kOperandMovieConnectionFlags = 1044,

Returns the current state of the streaming flags.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

90 VBR Sound Compression Support

© Apple Computer, Inc July, 2002

kOperandMovieConnectionString = 1045,

Returns the current string that may have been displayed in the
controller. This is only meaningful if the flags are non-zero.

VBR Sound Compression Support 1

QuickTime 6 adds support for using variable bitrate (VBR)-enabled sound
compressor components. Both the QuickTime Movie exporter component
available in the export dialog (also known as the ConvertMovieToFile API
dialog) and the Standard Sound compression dialog component have been
updated to use and to recognize VBR compressor components.

QuickTime 6 also provides QuickTime developers with the capability of
building their own custom VBR-enabled sound compressor components, as
discussed in this section.

Background 1

QuickTime 4.1 and the Sound Manager introduced support for the playback of
VBR audio––in particular, VBR support for the decoding and playback of MP3
audio. A number of modern audio compression formats, such as MP3, either
support or require VBR decoding.

Versions of QuickTime prior to QuickTime 4.1 provided support only for
constant bitrate (CBR) audio. The fundamental difference between constant
bitrate and variable bitrate audio is related to the rate at which audio data is
presented to the sound decoder to generate sound.

In CBR audio, the rate is constant. If one second of audio requires 40 K bytes,
then 5 seconds will require 200 K bytes (= 40 Kbytes/sec * 5 sec). Moreover,
given a stream of 3 minutes of audio compressed like this, to start playing at
2:30, you would advance 6,000K into the stream.

With VBR audio, the data rate varies depending upon the complexity of the
encoded sound. For example, a very quiet passage of a score could be
compressed much more than a very exciting passage. A VBR encoder will
analyze the audio and use the appropriate number of bits, varying its usage in
the process. This means that the amount of data for a complex passage is

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

VBR Sound Compression Support 91
© Apple Computer, Inc July, 2002

greater than for a less complex passage. This also complicates locating data in
the stream because the “road map” is located within the stream.

By way of analogy, video encoding formats are typically VBR in nature. A more
complex image requires more bits than a less complex image. As different
images are encoded, the number of bits required for each will vary. The analog
to CBR audio in the video space is raw RGB or uncompressed YUV.

QuickTime 6 VBR Support 1

As discussed, QuickTime and the Sound Manager have been able to decode
self-framed, variable bitrate formats such as MP3 since QuickTime 4.1. In
addition, the QuickTime Movie file format has been able to carry variable
bitrate audio.

With QuickTime 6, QuickTime and the Sound Manager add much richer and
more comprehensive support for VBR audio, including support for both
compression of VBR audio and decompression of non-self-framed VBR audio
formats. An example of a non-self-framed audio format is AAC, described in
the section “Defining AAC” (page 36). Table 2 shows the audio support
available since QuickTime 4.1.

Table 2 VBR audio support in different versions of QuickTime

Some Techniques For Compressing VBR Audio 1

This section discusses some of the techniques you can use if you need to
compress VBR audio.

Because variable bitrate audio may contain audio frames of different sizes, it is
important that an application use the appropriate APIs to generate the
compressed audio. If, for example, your application receives a -213

Version VBR Audio Support

QuickTime 6 Encode and decode, e.g.,
MP3

Non-self-framed VBR
audio, e.g., AAC

QuickTime 5 Decode and playback Self-framed VBR
QuickTime 4.1 Decode and playback,

e.g., MP3
Self-framed VBR

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

92 VBR Sound Compression Support

© Apple Computer, Inc July, 2002

(siVBRCompressionNotSupported) error from QuickTime or the Sound Manager, it
indicates either QuickTime or the Sound Manager doesn’t “know” about VBR
compression, or doesn’t believe your application understands VBR
compression.

To inform QuickTime that your application understands the details of VBR
compression, here are some steps that you should consider:

1. To begin with, you must use the SoundConverterFillBuffer() API. If you are
using the SoundConverterFillBuffer() API, you’ve already done most of the
work. Although SoundConverterConvertBuffer() cannot be used for VBR
compression, you can configure the SoundConverter without making a
decision as to using FillBuffer or ConvertBuffer yet, in case you want to
continue using the SoundConverterConvertBuffer() routine for fixed
compression audio. There is no good reason to do so, but it may be important
in your current implementation.

2. Your application must inform the SoundConverter that it can handle VBR
audio. To do this, immediately after opening the SoundConverter with
SoundConverterOpen(), make a call to SoundConverterSetInfo(), passing the
siClientAcceptsVBR selector like the following:

SoundConverterSetInfo(theSoundConverter, siClientAcceptsVBR,(void*)true);

This lets the sound converter know that you are VBR compression-aware.

3. After configuring the sound converter with compression parameters (if
present), request the compressor’s compression information, so you know
how many PCM samples are generated per audio frame.

4. Ask for siCompressionFactor and look at the resulting CompressionInfo. If the
compInfo.compressionID field is set to variableCompression, then the codec is
configured to generate VBR audio. If it has another value, the codec is
configured for a fixed bitrate––just as it would in versions of QuickTime
prior to QuickTime 6. Remember that a single codec can support fixed and
variable compression, so don’t assume its capabilities from its codec type.

Just as before, samplesPerPacket holds the PCM sample count per audio frame
(packet). For VBR audio, you can ignore bytesPerFrame/bytesPerPacket, since
the sizes aren’t constant.

5. For variable compression codecs, you need to know the worst case size of a
single audio frame (packet). You can then allocate the output buffer for use
with the SoundConverterFillBuffer() routine, based on a multiple of this

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

VBR Sound Compression Support 93
© Apple Computer, Inc July, 2002

size. Failing to do this might result in SoundConverterFillBuffer() not being
able to generate even a single audio frame. If you spin on
SoundConverterFillBuffer() waiting for it to generate at least one audio
frame before continuing but don’t provide a large enough output buffer, you
have the makings of a really cool and involved infinite loop.

Use the new selector siCompressionMaxPacketSize to retrieve the worst case
packet size. The following code shows an example:

UInt32 maxPacketSize = 0;

err = SoundConverterGetInfo(theSoundConverter,
siCompressionMaxPacketSize,
&maxPacketSize);

If a VBR codec doesn’t support this selector, you may want to use a worst case
output buffer size such as 32K.

Note
VBR codec developers should implement this selector.
This will not be implemented by fixed bitrate compressors,
although it is not illegal to do so.

6. Use SoundConvertFillBuffer() to perform the encoding, as shown in the code
below. The value should be tied to the codec’s current configuration.

err = SoundConverterFillBuffer(theSoundConverter, //a sound converter
fillBufferUPP, // proc
fillBufferRefCon, // refCon passed to FillDataProc
soundOutputBuffer, // compressed audio buffer
soundOutputBufferSize, // size of compressed audio buffer
&actualOutputBytes, // number of output bytes
&outputFrames, // number of output frames
&outputFlags); // fillbuffer returned advisory flags

The difference with VBR compression is that each call only returns audio, where
all the frames have the same size in bytes. This is necessary because the
SoundConverterFillBuffer() API returns the number of bytes it wrote and the
number of frames but doesn’t return any kind of array indicating the
boundaries between frames. If you divide actualOutputBytes by outputFrames,
you can determine how large each audio frame is.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

94 VBR Sound Compression Support

© Apple Computer, Inc July, 2002

As an example, if the audio frames have the following sizes in bytes

[40] [40] [50] [50] [50] [30] [40]

at least four calls to SoundConverterFillBuffer will be necessary in order to
encode these frames. This call would return the following values:

actualOutputBytes outputFrames
----------------- ------------

80 2
150 3
30 1
40 1

Using the Standard Sound Compression
Component and VBR Compression 1

Like the SoundConverter, QuickTime doesn’t want to offer VBR sound
compressors to applications that cannot support them. This means that if your
application uses the Standard Sound Compression dialog to select and
configure sound compressors, you should pass the new (in QuickTime 6)
scSoundVBRCompressionOK selector to SCSetInfo() as in the following code
example:

ComponentInstance ci = OpenDefaultComponent(StandardCompressionType,
StandardCompressionSubTypeSound);

if (ci) {
Boolean doVBR = true;

SCSetInfo (ci, scSoundVBRCompressionOK, &doVBR);
. . .

If you don’t pass the new scSoundVBRCompressionOK selector to SCSetInfo(), only
fixed compression codecs will be presented in the list.

In fact, compressors that perform fixed and variable compression will be
presented if this selector is not called, but those compressors will only offer
their fixedCompression options. Since AAC only performs variable
compression, it will not appear in the dialog unless you call SCSetInfo with
scSoundVBRCompressionOK.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

VBR Sound Compression Support 95
© Apple Computer, Inc July, 2002

In QuickTime 6, a new Standard Compression selector is provided in
QuickTimeComponents.h that returns a list of available codecs. The selector, a
pointer to a handle, is defined as follows:

scAvailableCompressionListType = FOUR_CHAR_CODE('avai')

This is the same kind of handle as the existing scCompressionListType selector.
Applications that need to build lists of codecs (compressors) for their user
interface should adopt this API. If the scAvailableCompressionListType selector
is not recognized, use the previous code.

Audio File Formats and VBR Compression 1

Not all audio file formats can hold variable compression audio, since the
information about framing isn’t always available in every format.

QuickTime Movies provide a format that can hold the information, just as
MPEG-4 files can. AIFF and WAVE, however, are formats that do not carry such
information.

This explains why you see the MPEG-4 audio codec available in the QuickTime
Movie exporter’s sound options––but not in the AIFF options. Not surprisingly,
these exporters use the Standard Sound Compression dialog as above. Because
VBR compression is opted in by the client, only the QuickTime Movie exporter
passes the scSoundVBRCompressionOK selector.

Doing Something with VBR Audio Data 1

At this point in the process, your application is either generating VBR audio to
be stored in a QuickTime Movie for playback later, or you want to play or
decode the audio directly. Of course, you may be using your own format to
store the audio, but remember, you need to store the framing information
yourself.

If you store the data in the QuickTime Movie, you need to store the generated
audio frames in a way that is compatible with how QuickTime stores VBR
audio in sound tracks.

To play or decode the audio, you need to use the additional fields in the
ExtendedSoundComponentData, ExtendedScheduledSoundHeader, or
ExtendedSoundParamBlock, depending on how you are playing the data.
Fortunately, they are the same fields.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

96 VBR Sound Compression Support

© Apple Computer, Inc July, 2002

The following fields are introduced in QuickTime 6:

long frameCount; // number of audio frames
long * frameSizesArray; // pointer to array of longs with frame sizes

// in bytes
long commonFrameSize; // size of each frame if common

Specifically, frameCount, frameSizesArray and commonFrameSize are relevant for
playback and decoding of AAC audio, as well as for other non-self-framed
audio VBR audio formats.

As discussed earlier, QuickTime versions prior to QuickTime 6 could handle
self-framed VBR audio. This is why the existing extended bufferSize field is
sufficient for MP3 audio. AAC audio, though, doesn’t have information within
it to indicate framing, and depends upon out-of-band data to carry that
information. In the case of QuickTime and MPEG-4 movies, that information is
in the sample tables.

The fields just described (new in QuickTime 6) are used to convey the
information to the audio decoder (or sound decompressor in Sound Manager
parlance) and are necessary for use with AAC audio. In all cases, these fields all
describe a single buffer of audio. The existing sampleCount, buffer and
bufferSizes fields all must be valid.

In addition, either frameCount and frameSizesArray or commonFrameSize must be
valid (indicated by extendedFlags) in order to decode AAC data. (Note that
frameCount and frameSizesArray must be valid as a unit because they work
together, not as separate fields.)

The flags for extendedFlags are in the header file Sound.h as follows:

kExtendedSoundFrameSizesValid = 1L << 2,
// set if frameSizesArray is valid
// (this will be nil if all sizes are common and
// kExtendedSoundCommonFrameSizeValid is set)

kExtendedSoundCommonFrameSizeValid = 1L << 3,
// set if all audio frames have the same size and
// the commonFrameSize field is valid

If commonFrameSize is set, this means that all audio frames in the VBR buffer
have exactly the same size in bytes. There is no frame count, since bufferSize
divided by commonFrameSize is the frame count.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Tween Component API 97
© Apple Computer, Inc July, 2002

If frameCount and frameSizesArray are valid (remember, these fields must be
considered as a unit), then frameCount holds a count of the number of elements
in the frameSizesArray array. This array is a set of 32-bit values holding the size
of each audio frame. In the above example, the fields would look like this:

frameCount = 7;
frameSizeArray = --> { 40, 40, 50, 50, 50, 30, 40 }

Note
The frameCount and frameSizesArray fields will be updated
by the decoder, so you should not allocate a pointer and
store that in frameSizesArray and expect to be able to
deallocate it when done. Instead, allocate the pointer and
store a copy of the address in frameSizesArray.

Just as you can use the SoundConverterFillBuffer() routine to encode VBR
audio, you can also use it to decode AAC audio. However, the
SoundConverterFillBufferDataProc’s returned ExtendedSoundComponentData must
set the appropriate flags, including the fields described above.

New Tween Component API 1

In QuickTime 6, tween components now provide an interrupt-safe interface
using a new API routine, QTDoTweenPtr. This new call provides for return values
in a pointer rather than a handle. Some specific tweens implemented as
components required changes to ensure their interrupt safeness. Not all
Apple-defined tween components support this new API. However, all of those
needed for effects have been so revised.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

98 New Tween Component API

© Apple Computer, Inc July, 2002

QTDoTweenPtr 1

Runs a tween component, providing for return values in a pointer rather than a
handle.

OSErr QTDoTweenPtr (QTTweener tween,
TimeValue atTime,
Ptr result,
long resultSize) ;

tween A tween to be run.

atTime A value that defines the time to run the tween.

result The result of the tweening operation.

resultSize The size of the result returned.

DISCUSSION

This routine is an interrupt-safe version of the QTDoTween routine, which also
runs a tween component. Note that it has the following limitations:

■ Not all tween types support this call (those which must allocate memory), in
which case they return codecUnimpErr.

■ The QTAtomContainer used for the tween must be locked.

■ The dataSize must be large enough to contain the result.

■ This call is not supported for sequence tweens; you should use interpolation
tweens instead.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Changes to Effects Dialog 99
© Apple Computer, Inc July, 2002

Changes to Effects Dialog 1

In QuickTime 6, the effects dialog has been revised and enhanced. The new
features include

■ Grouping into types within the scrolling list on the left side of the dialog. In
this new design, each effect defines what subgroup it belongs to, as shown in
Figure 11. Any third-party effects installed appear under “Misc” until they
are revised to include their subgroup information.

■ Resizability of the dialog and split bars to control the list vs. preview vs.
effect-specific areas. Note that the resize control is only drawn in Mac OS 8.1
and later.

■ Providing a widget for picking points, which can be used in any effect that
allows the selection of points (that is, x and y values). Notice that such items
have turned from a multitude of sliders into this point-picking widget.

■ Allowing effect components to specify custom “picking interfaces” for parts
of their user interface, while allowing the Generic effect to handle the
remainder.

■ Providing a way to set slider values by typing. Any slider within the effects
dialog will now allow this. Command-clicking any slider brings up a modal
dialog. The dialog is centered below the control to edit. The dialog is sized
appropriately for name and length of number edit. The dialog contains a
type-in field, parameter name label, and OK and Cancel buttons.

■ A knob control that provides a way to set angles greater than 360 degrees.
This is used in the Slide effect. Knob control now has an inner section that
serves as an hour hand. When the knob is manipulated beyond one rotation,
the hour hand increments. This wraps properly both forward and backward
over the 12 o’clock position.

■ Effects may now specify some common “presets” that the user can easily
select. These are used in the Slide effect. When such an effect is selected, the
first subpanel is a list of presets, each with a name and preview. The pane
scales to the available space, and implements a scroll bar if needed.

■ The subgroup pop-up menu at the top of the screen will read Easy and
Custom if there are no additional subpanes. If there are, the pop-up menu
reads Easy and the names of the other subpanes.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

100 Changes to Effects Dialog

© Apple Computer, Inc July, 2002

Figure 11 A new effects dialog in Mac OS X with sliders and menu items

■ A new effect called Channel Composite provides a way to create a bitmap
whose color components are a combination of source A and B color
components, reshuffled, and inverted as desired.

■ The Color Tint effect now allows user to specify an amount of tinting to
allow a gradual transition to a particular color, such as Sepia. A new pair of
sliders controls this. Tweening is allowed. The default value is to tint fully
(for backwards compatibility) for the entire duration of the effect.

■ Effects may now have tween values when filtering during export, that is,
Movie to QuickTime Movies. Some effects, such as Lens Flare and RGB
Balance, now have a starting and ending value that you can set. Some (such
as RGB Balance) display this information only if the Option key is pressed
when selecting the Filter button. This is because tweening these values is
uncommon.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Changes to Effects Dialog 101
© Apple Computer, Inc July, 2002

Custom Effect Controls 1

Effects may choose to implement custom controls to allow the user to more
easily edit complex parameters that are ill-served by simple sliders or type in
boxes. Effects may allow a custom control for either a single parameter, or for a
group of parameters.

Parameter(s) for a custom control must still be data types defined by the
standard set, or for complex records of data, must be defined within a group as
individual parameters made up from base data types (for example, a point is a
group containing two Fixed point numbers).

This is to allow applications that do not wish to use the custom control for the
effect to set values themselves.

Effects should be aware that these custom controls may be deployed by the
application in either a dialog or a window, with application-defined
background colors or patterns, along with application-defined font
characteristics for the window.

It is recommended that an effect implement custom controls only when needed,
and that custom controls be used for specific types of parameters (i.e., point,
rectangle, polygon, path) rather than the entire user interface for the effect.
Effects may choose to implement multiple custom controls that combine with
standard controls to present the total user interface.

For effects that have very complex user interfaces not well suited for inclusion
within a single window, it is recommended to use
kParameterImageIsPreset––which allows the effect to have an external editing
application for parameters that may then be set within the standard User
Interface via the open file dialog or drag and drop. The Lens Flare (shown in
Figure 12) effect’s “Flare Type” is an example of such a preset.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

102 Changes to Effects Dialog

© Apple Computer, Inc July, 2002

Figure 12 A new Lens Flare effect dialog in Mac OS X

New Behavior Flag kCustomControl Added 1

For parameters that use a custom control to control a single parameter value, a
new behavior flag has been added (kCustomControl), and the behavior for the
parameter should be kParameterItemControl.

For parameters that are groups, the same flag (kCustomControl) should be used,
and the behavior should be kParameterItemGroupDivider. Groups with the
kCustomControl bit set will be implemented by calling the custom control for
that group––the parameters within that group will not be processed in the
normal manner.

In both cases, the new customType and customID fields of the behavior must be
filled in. These are used in order to allow your custom control to determine
which parameter is being edited in the case where the custom control is used
for the editing of multiple parameters. These values are passed into the
pdActionCustomNewControl call. Since the custom control mechanism is also used
by QuickTime’s default effect dialogs, you should be prepared to pass onto the

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Changes to Effects Dialog 103
© Apple Computer, Inc July, 2002

base effect any pdActionCustomNewControl calls for type/id pairs that you do not
handle yourself. When pdActionCustomNewControl is called for controls of types
handled by QuickTime, customType is kParameterAtomTypeAndID and customID
is the ID of the parameter atom.

Using pdActionCustomNewControlControl to Create New Custom Controls 1

pdActionCustomNewControlControl is called by the application to create a new
custom control or set of controls for an effect parameter. When
pdActionCustomNewControl is called, the effect should perform any basic
allocation it needs for storage and return the result in storage. The options
parameter tells the control if the application wishes to support interpolated,
optionally interpolated, or a single value parameter.

Since pdActionCustomNewControlControl may call upon your effect for other
items within the dialog, it is recommended that your effect have an easy way to
determine which controls it implements by using one of these two techniques:

■ by having storage be a pointer with an OSType at the beginning to mark
controls implemented by your code

■ keeping track in your component globals those custom controls that you
have created

When pdActionCustomDisposeControl is called, any allocation done by the
control should be disposed of. In addition, pdActionCustomDisposeControl is the
last chance the control has to commit any user changes into the sample.

Controls that implement type-in fields typically need to commit any final user
edits at this time.

struct QTCustomControlNewRecord {
void * storage; /* storage allocated/disposed by the control*/
QTParameterDialogOptions options; /* options used to control

interpolation/not*/
QTAtomContainer sample; /* sample that holds the data to be edited*/
long customType; /* custom type and ID specified by effect for

creation of this control*/
long customID;

};

typedef struct QTCustomControlNewRecord QTCustomControlNewRecord;

typedef QTCustomControlNewRecord * QTCustomControlNewPtr;

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

104 Changes to Effects Dialog

© Apple Computer, Inc July, 2002

pdActionCustomPositionControl is called by the application to position the
control within a window or dialog.

The control should determine if it will fit in the allotted area and position itself
there. It should also return the space taken up by the control. Note you are free
to implement controls which are variable in size depending upon which
parameter you are editing. You don’t need to scale your control to the requested
size. If the area presented to your control is too small, set didFit to FALSE. You
should still return in used the size you would have liked to use for the control.
The application will then try again with a new size. Note that all controls must
be able to fit within a minimum of 300 by 250 pixels.

Displaying Text Properly in Application Windows 1

Custom controls that draw text should make note of the text font, size, and style
at this time in order to properly display within application windows.

Note that the default state for the control is hidden. You will receive a
pdActionCustomShowHideControl in order to enable your control. You should not
draw your control in response to pdActionCustomPositionControl.

struct QTCustomControlPositionControlRecord {
void * storage; /* storage for the control*/
WindowPtr window; /* window to be used by the control*/
Rect location; /* location within the window the control may use*/
Rect used; /* returned by the control to indicate size it actually

used*/
Boolean didFit; /* did the control fit in the specified area?*/
Boolean pad[3];

};

typedef struct QTCustomControlPositionControlRecord
QTCustomControlPositionControlRecord;

typedef QTCustomControlPositionControlRecord *
QTCustomControlPositionControlPtr;

pdActionCustomShowHideControl is called when the application wishes to
enable/disable your control, or completely disable drawing of the control.

Your control should make note of the new state (if different from the last) and
perform an InvalRect() on your drawing area, or you may draw your control’s

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Changes to Effects Dialog 105
© Apple Computer, Inc July, 2002

initial state in the case of show. You should not attempt to erase your control as
the result of a hide. Instead, call InvalRect() and allow the application to
process the resulting event as appropriate.

struct QTCustomControlShowHideControlRecord {
 void * storage; /* storage for the control*/
 Boolean show; /* display the control?*/
 Boolean enable; /* enable the control (ie, black vs gray display)*/
 Boolean pad[2];
};
typedef struct QTCustomControlShowHideControlRecord
QTCustomControlShowHideControlRecord;

typedef QTCustomControlShowHideControlRecord *
QTCustomControlShowHideControlPtr;

Using pdActionCustomHandleEvent To Process Events 1

pdActionCustomHandleEvent is called to allow your custom control to process
events.

Typical controls handle the following events:

■ activate to draw your control in normal/gray mode

■ update to draw your control

■ mouseDown to handle clicks

■ keyDown to handle typing when you have focus

■ idle to perform idle drawing (if applicable)

If your control handles the entire event, set didProcess to TRUE. If you handled
the event, but other controls still need the event, set didProcess to FALSE.

If your control supports the concept of focus for the purposes of typing (such as
by having a type-in box for the parameter), then you set the tookFocus Boolean
as part of your processing of the event. It is assumed that your control will
draw the appropriate focus user interface as a result, and the calling application
will disable any focus drawing within the remainder of the user interface.

By default, custom controls are not given idle time. If you need idle time, set
needIdle to TRUE in response to the event that causes you to need idle (typically
the taking of focus, or the first draw).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

106 Changes to Effects Dialog

© Apple Computer, Inc July, 2002

Your control will continue to be given idle events until you set needIdle to
FALSE in response to a nullEvent.

struct QTCustomControlHandleEventRecord {
void * storage; /* storage for the control*/
EventRecord * pEvent; /* event to process*/
Boolean didProcess; /* did we process entire event?*/
Boolean tookFocus; /* did we take focus as a result of this event

(typically mouseDowns)*/
Boolean needIdle; /* does this control need idle events?*/
Boolean didEdit; /* did we edit the samples?*/

};

typedef struct QTCustomControlHandleEventRecord
QTCustomControlHandleEventRecord;

typedef QTCustomControlHandleEventRecord * QTCustomControlHandleEventPtr;

Using pdActionCustomSetFocus to Set or Advance Current Focus 1

pdActionCustomSetFocus is called in order to set or advance the current focus of
the user interface, typically because the user has pressed the tab or shift-tab
keys, or because the user clicked within the area defined by your control.

Your control will be called with pdActionFocusFirst, pdActionFocusLast, or
pdActionFocusOff to set or clear focus on your control. Your control will be
called with pdActionFocusForward or pdActionFocusBackward to cycle focus
within your control (if your control has multiple focus). If your control does not
support focus, or the focus request results in focus moving beyond your
supported range, return pdActionFocusOff in the focus parameter. Otherwise,
return the focus that you set.

Controls which have no focus would always set focus to be pdActionFocusOff.

Controls with a single focus would set pdActionFocusFirst when requested to
set either pdActionFocusFirst or pdActionFocusLast, and would set
pdActionFocusOff for either pdActionFocusForward or pdActionFocusBackward.

enum {
 pdActionFocusOff = 0, /* no focus */
 pdActionFocusFirst = 1, /* focus on first element */
 pdActionFocusLast = 2, /* focus on last element */
 pdActionFocusForward = 3, /* focus on next element */
 pdActionFocusBackward = 4 /* focus on previous element */
};

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Changes to Effects Dialog 107
© Apple Computer, Inc July, 2002

struct QTCustomControlSetFocusRecord {
 void * storage; /* storage for the control*/
 long focus; /* focus to set, return resulting focus*/
};
typedef struct QTCustomControlSetFocusRecord
QTCustomControlSetFocusRecord;

typedef QTCustomControlSetFocusRecord * QTCustomControlSetFocusPtr;

Using pdActionCustomSetEditMenu To Locate The Edit Menu 1

pdActionCustomSetEditMenu will be called to inform your custom control of the
location of the edit menu.

If your control has editing boxes, this is useful in order to allow the user to
perform cut, copy, and paste operations when focus is on one of these boxes.

struct QTCustomControlSetEditMenuRecord {
 void * storage; /* storage for the control*/
 MenuHandle editMenu; /* edit menu, or NIL*/
};
typedef struct QTCustomControlSetEditMenuRecord
QTCustomControlSetEditMenuRecord;

typedef QTCustomControlSetEditMenuRecord * QTCustomControlSetEditMenuPtr;

Using pdActionCustomSetPreviewPicture To Preview Information 1

pdActionCustomSetPreviewPicture is called to inform your custom control of
preview information that you may wish to use in the drawing of your user
interface.

struct QTCustomControlSetPreviewPictureRecord {
void * storage; /* storage for the control*/
QTParamPreviewPtr preview; /* preview to set*/

};

typedef struct QTCustomControlSetPreviewPictureRecord
QTCustomControlSetPreviewPictureRecord;

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

108 Changes to Effects Dialog

© Apple Computer, Inc July, 2002

typedef QTCustomControlSetPreviewPictureRecord *
QTCustomControlSetPreviewPicturePtr;

pdActionCustomSetEditCallout tells your control of the need by the application
to be informed of changes to the parameter values (typically for the purposes of
updating previews).

If a callout is available, your custom control should call it whenever a change
has been made to the parameter(s) that your control is editing (as a result of
user actions, most typically). If you choose not to implement this, live dragging
or updating of values will not work.

struct QTCustomControlSetEditCalloutRecord {
 void * storage; /* storage for the control*/
 QTParamPreviewCalloutPtr callout; /* requested callout, or NIL to

disable*/
};
typedef struct QTCustomControlSetEditCalloutRecord
QTCustomControlSetEditCalloutRecord;

typedef QTCustomControlSetEditCalloutRecord *
QTCustomControlSetEditCalloutPtr;

Using pdActionCustomGetEnableValue to Enable or Disable Other Controls 1

pdActionCustomGetEnableValue allows you to return a value for the purposes of
enabling or disabling other controls.

Most custom controls do not need to implement this call.

If your control is able to control the enabling and disabling of other parameter
controls (such as is done by standard pop up or enumerated type controls), you
need to supply a value that can be use for greater than or less than types of
comparisons.

struct QTCustomControlGetEnableValueRecord {
 void * storage; /* storage for the control*/
 long currentValue; /* value to compare against for enable/disable

purposes*/
};
typedef struct QTCustomControlGetEnableValueRecord
QTCustomControlGetEnableValueRecord;

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Changes to Effects Dialog 109
© Apple Computer, Inc July, 2002

typedef QTCustomControlGetEnableValueRecord *
QTCustomControlGetEnableValuePtr;

Using pdActionCustomSetSampleTime to Specify Duration and Start Time 1

pdActionCustomSetSampleTime tells your control information from the
application about the duration and start time for the sample being edited.

Most controls do not need this information, but some may choose to use it in
the interface they present the user. However, this call need not be made by
applications, so the custom control should be prepared to run when the sample
time information is not available.

struct QTCustomControlSetSampleTimeRecord {
 void * storage; /* storage for the control*/
 QTParamSampleTimePtr sampleTime; /* sample time information or NIL*/
};
typedef struct QTCustomControlSetSampleTimeRecord
QTCustomControlSetSampleTimeRecord;

typedef QTCustomControlSetSampleTimeRecord *
QTCustomControlSetSampleTimePtr;

pdActionCustomGetValue tells your control to store any value(s) into the specified
atom container.

All custom controls must implement this call.

struct QTCustomControlGetValueRecord {
 void * storage; /* storage for the control*/
 QTAtomContainer sample; /* sample to store into*/
};
typedef struct QTCustomControlGetValueRecord
QTCustomControlGetValueRecord;

typedef QTCustomControlGetValueRecord * QTCustomControlGetValuePtr;

Using pdActionCustomDoEditCommand to Handle Edit Commands 1

pdActionCustomDoEditCommand tells your control to handle edit commands if it
allow focus and type in boxes.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

110 Changes to Effects Dialog

© Apple Computer, Inc July, 2002

All custom controls must implement this call if they support edit boxes.

struct QTCustomControlDoEditCommandRecord {
 void * storage; /* storage for the control*/
 long command; /* command to execute, return 0 here if processed*/
};
typedef struct QTCustomControlDoEditCommandRecord
QTCustomControlDoEditCommandRecord;

typedef QTCustomControlDoEditCommandRecord *
QTCustomControlDoEditCommandPtr;
typedef long QTParameterDialog;
enum {
 elOptionsIncludeNoneInList = 0x00000001 /* "None" effect is included

in list */
};

typedef long QTEffectListOptions;
enum {
 pdOptionsCollectOneValue = 0x00000001, /* should collect a single

value only*/
pdOptionsAllowOptionalInterpolations = 0x00000002, /* non-novice

interpolation options are shown */
pdOptionsModalDialogBox = 0x00000004, /* dialog box should be modal */
pdOptionsEditCurrentEffectOnly = 0x00000008, /* List of effects will not

be shown */
pdOptionsHidePreview = 0x00000010 /* Preview item will not be shown */

enum {
effectIsRealtime = 0 /* effect can be rendered in real time */

};

The following is a new API introduced in QuickTime 6.

QTGetEffectsListExtended 1

Provides for more advanced filtering of effects to be placed into the effect list.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Changes to Effects Dialog 111
© Apple Computer, Inc July, 2002

QTGetEffectsListExtended (QTAtomContainer * list,
long minSources,
long maxSources,
QTEffectListOptions getOptions,
OSType majorClass,
OSType minorClass,
QTEffectListFilterUPP filterProc,
void * filterRefCon);

list The effect list returned here.

minSources The minimum number of sources that an effect must have to be
added to the list. Pass –1 as this parameter to specify no
minimum.

maxSources The maximum number of sources that an effect can have to be
added to the list. Pass –1 as this parameter to specify no
maximum. The minSources and maxSources parameters allow
you to restrict which effects are returned in the list, by
specifying the minimum and maximum number of sources that
qualifying effects can have.

getOptions The options for populating the list.

majorClass The major class to include, 0 for all.

minorClass The minor class to include, 0 for all.

filterPro Additional client filtering.

filterRefCon A reference constant for the filter proc.

DISCUSSION

This routine provides for more advanced filtering of effects to be placed into the
effect list. Applications can filter on:

■ the number of input sources

■ effect major or minor class

■ custom filtering through a callback

The callback is called for each effect which passes the other criteria for
inclusion. If the callback returns a TRUE result, the effect is included in the list.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

112 QuickTime Effects Classes

© Apple Computer, Inc July, 2002

Note that your filter proc may receive multiple effects from various
manufacturers. If you return TRUE for multiple effects of a given type, only the
one with the higher parameter version number will be included.

If you wish other filtering such as effects from a given manufacturer, you can do
this by returning FALSE for the other effects and TRUE for those that you prefer.

typedef CALLBACK_API(Boolean, QTEffectListFilterProcPtr)(Component
effect, long effectMinSource, long effectMaxSource, OSType majorClass,
OSType minorClass, void *refcon);

typedef STACK_UPP_TYPE(QTEffectListFilterProcPtr)
QTEffectListFilterUPP;

VERSION NOTES

Introduced in QuickTime 6.

SEE ALSO

QTGetEffectsList, which returns a QT atom container holding a list of the
currently installed effects components.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

QuickTime Effects Classes 1

With an ever-increasing number of effect components, it has become difficult
for applications and users to navigate through the list. This section documents
upcoming atoms that can be used for tagging effects into useful categories.

This will be of use to developers of applications that supply custom effect
picking UI. It will also be of use for developers of effect components. Two
groupings for effects are here defined: Major Class and Minor Class.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

QuickTime Effects Classes 113
© Apple Computer, Inc July, 2002

Major Class 1

The Major Class for an effect defines the purpose of an effect to allow
applications to perform better filtering. It is not intended that the user see
effects grouped by major class. For example, a two source effect might be given
a major class of kTransitionMajorClass, which allows applications to tell the
difference between two source effects that perform a transition vs. those that
perform operations such as Chroma Key. Some applications may wish to
exclude all effects that are not transitions.

Effects supply information about their Major Class through the use of an atom
that can be found within their Effect Parameter Description atom container.
Applications can read in this atom to determine the Major Class of a particular
Effect.

#define kEffectMajorClassType 'clsa'
#define kEffectMajorClassID (1)

The following are the defined legal values for the Major Class atom. Effects that
fail to include a kEffectMajorClassType will be classified as kMiscMajorClass.
Developers who feel their effect requires a new Major Class should contact
Apple. Because Major Classes are used for filtering by applications, any
extensions will need to be documented before they can become useful.

#define kGeneratorMajorClass 'genr' // zero source effects
#define kFilterMajorClass 'filt' // one source effects
#define kTransitionMajorClass 'tran' // multisource morph

// effects
#define kCompositorMajorClass 'comp' // multisource layer

// effects
#define kMiscMajorClass 'misc' // all other effects

Minor Class 1

Like the Major Class, the Minor Class of an effect serves to group the effect into
a more refined definition. Unlike the Major Class, however, the Minor Class is
intended to be used for grouping for the purposes of User Interface
presentation. It is not intended that the Minor Class should be used for limiting
the list of effects that a user might see––that is the purpose of the Major Class.

Effects supply information about their Minor Class through the use of an atom
that can be found within their Effect Parameter Description atom container.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

114 QuickTime Effects Classes

© Apple Computer, Inc July, 2002

Applications can read in this atom to determine the Minor Class of a particular
Effect.

#define kEffectMinorClassType 'clsi'
#define kEffectMinorClassID (1)

The following are Apple-defined values for the Minor Class atom, along with
the recommended name to be used for display purposes. Effects that fail to
include a kEffectMinorClassType will be classified as kMiscMinorClass. Effects
are free to define their own Minor Classes, although Apple recommends that
standard values be used if at all possible.

#define kGeneratorMinorClass 'genr' // "Generators"
#define kRenderMinorClass 'rend' // "Render"
#define kFilterMinorClass 'filt' // "Filters"
#define kArtisticMinorClass 'arts' // "Artistic
#define kBlurMinorClass 'blur' // "Blur"
#define kSharpenMinorClass 'shrp' // "Sharpen"
#define kDistortMinorClass 'dist' // "Distort"
#define kNoiseMinorClass 'nois' // "Noise"
#define kAdjustmentMinorClass 'adst' // "Adjustments"
#define kTransitionMinorClass 'tran' // "Transitions"
#define kWipeMinorClass 'wipe' // "Wipes"
#define k3DMinorClass 'pzre' // "3D Transitions"
#define kCompositorMinorClass 'comp' // "Compositors"
#define kEffectsMinorClass 'fxfx' // "Special Effects"
#define kMiscMinorClass 'misc' // "Miscellaneous"

Effects that don’t fit into the above listed groupings can supply another value
for their Minor Class. However, it is likely that these effects will want to have a
user visible name to go along with their class. The name is supplied by another
atom, which should contain a Pascal string that is the name of the minor class. If
the minor class is one which already has a standard name, this atom will be
ignored.

#define kEffectMinorClassNameType 'clsn'
#define kEffectMinorClassNameID (1)

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

QuickTime Effects Presets 115
© Apple Computer, Inc July, 2002

QuickTime Effects Presets 1

Some effects with complex parameters would like to provide the user with
groups of useful parameter values that can be easily selected. This section
documents an optional mechanism that can be used by effects to define these
“presets.” Applications may also use these presets to present to the user a list of
selectable effect parameters.

Atom Contents 1

Like most options within effects, the presets are defined through the use of
atoms present within the Effect Parameter Description atom container. Effects
may define any number of presets, with the atom type being kEffectPresetType
and the ID being numbers from 1 to N (where N is the number of presets).

Within each preset, three child atoms are found:

#define kPresetNameType 'pnam'
#define kPresetNameID (1)
#define kPresetPreviewPictureType 'ppct'
#define kPresetPreviewPictureID (1)
#define kPresetSettingsType 'psst'
#define kPresetSettingsID (1)

The preset name defines the name of the preset as a Pascal string. The preset
preview picture defines the image to be displayed to the user as a picture with a
minimum size of 86 by 64 pixels. The preset settings atom contains within it all
of the parameter values that define a particular preset.

Example Effect 'atms' Resource 1

This example shows the presets present in the Slide effect that define a Top and
Bottom directed slide. The example is a portion of the 'atms' resource and
demonstrates how to define these presets through the use of Rez.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

116 QuickTime Effects Presets

© Apple Computer, Inc July, 2002

// atom type ID Child count
kEffectPresetType, 1, 3,

{
};
kPresetNameType, kPresetNameID, noChildren,

{
string { "Top" };
};

kPresetPreviewPictureType, kPresetPreviewPictureID, noChildren,
{
lstring {

$"08A0 0000 0000 0040 0056 0011 02FF 0C00"
/* MORE PICTURE DATA HERE */
$"7FE0 03AB 7FE0 03AB 7FE0 03AB 7FE0 00FF"
};

};
kPresetSettingsType, kPresetSettingsID, 2,

{
};
'pcnt', 1, 2,

{
};
'twnt', 1, noChildren,

{
kParameterTypeDataFixed;
};

'data', 1, noChildren,
{
long { "0" };
long { "65536" };
};

'angl', 1, noChildren,
{
Fixed { "0.0" };
};

// atom type ID Child count
kEffectPresetType, 2, 3,

{
};
kPresetNameType, kPresetNameID, noChildren,

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

None Codec Enhancements 117
© Apple Computer, Inc July, 2002

{
string { "Bottom" };
};

kPresetPreviewPictureType, kPresetPreviewPictureID, noChildren,
{
lstring {
$"083C 0000 0000 0040 0056 0011 02FF 0C00"
/* MORE PICTURE DATA HERE */
$"0277 BF42 1F08 5FE8 001F 00FF"

};
};

kPresetSettingsType, kPresetSettingsID, 2,
{
};
'pcnt', 1, 2,

{
};
'twnt', 1, noChildren,

{
kParameterTypeDataFixed;
};

'data', 1, noChildren,
{
long { "0" };
long { "65536" };
};

'angl', 1, noChildren,
{
Fixed { "180.0" };
};

None Codec Enhancements 1

QuickTime 6 includes an improved None codec (also known as the Raw codec
because it deals with manipulations of uncompressed pixels). The new version
provides the following enhancements:

■ improved quality

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

118 None Codec Enhancements

© Apple Computer, Inc July, 2002

■ increased speed

■ greater robustness

■ significantly decreased memory usage, with little increase in code size.

In QuickTime 5.0.x and before, the None codec would always use point
sampling. The new version uses point sampling in the fastest, lowest-quality
mode, bilinear interpolation in a slower, medium-quality mode, and bicubic
anti-aliasing in the slowest, highest-quality mode.

The enhanced None codec introduces two new quality levels beyond the
point-sampling quality provided in the previous None codec:

■ bilinear interpolation

■ bicubic anti-aliasing

This quality is especially apparent in

(1) rotation,

(2) perspective,

(3) image size reduction, and

(4) image size zooming.

Bilinear interpolation is available with codecHighQuality.

codecMaxQuality yields either bicubic anti-aliasing or bicubic interpolation,
depending on the complexity of the transformation: anti-aliasing is currently
only available with pure scaling operations, not rotation or perspective. The
anti-aliasing is designed to meet or exceed the quality produced by Adobe
PhotoShop. When specifying codecNormalQuality, point-sampling is used.

When doing minor size changes or phase changes, there is little apparent
difference in quality between bilinear and bicubic interpolation: the primary
difference is in sharpness and contrast. This is especially noticeable after
multiple generations of processing, where bilinear processing will lose
sharpness and contrast, whereas bicubic interpolation tends to preserve it.

When zooming up by a factor of 4 or more, bilinear interpolation suffers from
“stellation”: where stars are superimposed on the pixels. Bicubic interpolation
yields more natural, rounded, smooth features without artifacts.

When decimating an image (that is, reducing its size), bicubic anti-aliasing
produces the best possible quality. Bilinear interpolation can yield acceptable
quality if only shrinking a small amount, but decimation by greater than a

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

None Codec Enhancements 119
© Apple Computer, Inc July, 2002

factor of 2 will cause aliasing, which is manifested as jaggies, disappearing
detail, and “popping pixels.”

As expected, higher quality comes at a price. With point-sampling
(codecNormalQuality) taking 1 T seconds, the others take approximately:

■ 1 T: codecNormalQuality = point-sampling

■ 3 T: codecHighQuality = bilinear interpolation

■ 10 T: codecMaxQuality = bicubic interpolation or anti-aliasing

Using a higher quality may have a negative effect on frame rate, especially on
older machines. Typically, codecMaxQuality is to be used for off-line,
non-real-time applications, whereas codecHighQuality can be used successfully
for real-time applications on faster machines. You might want to check the
frame rate and throttle the quality as appropriate. Even faster machines can
benefit from this throttling, because their frame rate can suffer on higher
resolution images.

The new enhanced None codec is a complete implementation of its component
interface. Complete implementation is defined as:

■ 11 pixel formats for the source

■ 11 pixel formats for the destination

■ 8 transfer modes

■ 3 quality levels

■ full 3x3 matrix transformations, including rotation and perspective

Pixel formats:

■ 8 bit color mapped

■ 8 bit grayscale

■ 16 bit BE555

■ 16 bit LE555*

■ 16 bit LE565*

■ 24 bit RGB

■ 24 bit BGR*

■ 32 bit ARGB

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

120 None Codec Enhancements

© Apple Computer, Inc July, 2002

■ 32 bit ABGR*

■ 32 bit BGRA*

■ 32 bit RGBA*

(Note that formats flagged with an asterisk (*) are only available on Windows).

Transfer modes:

■ Copy

■ Dither Copy

■ Transparent (chroma-key)

■ Blend

■ Straight alpha

■ Alpha premultiplied to black

■ Alpha premultiplied to white

■ Straight alpha blend

Alpha-premultiplied-to-black is the fastest of the alpha compositing modes. For
example, it is possible to transform a 32 bit ARGB PixMap by a 3x3 perspective
transformation, interpolating it with bicubic interpolation, and
alpha-compositing it to an 8-bit color-mapped PixMap––directly––one-pass.

More pixel formats (1, 2 and 4 bits) are supported, but in a less than desirable
way, by relying on CopyBits and multiple instantiations of the enhanced None
codec. Other transfer modes (for example, XOR) are feebly supported in the
same manner.

Alpha is a first class component of 32 bit pixels. The previous None codec
sometimes behaved badly with the alpha component, but the enhanced None
codec preserves it and involves it in computations. The result of an alpha
composition has a meaningful alpha component, which can then be used as a
source for a subsequent alpha composition; using this, rendering can be
optimized by caching partial composites of the static portions of scenes,
requiring only the dynamic portions to be composited individually. From an
architectural viewpoint, these alpha operations lend themselves then to a
composition tree or DAG (directed acyclic graph), rather than a simple
composition pipeline as limited in the previous None codec. This comes at no
additional computational cost.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Additional Still Image Metadata Support in Mac OS 9 and Windows 121
© Apple Computer, Inc July, 2002

The enhanced None codec in QuickTime 6 is typically invoked using:

■ MakeImageDescriptionForPixMap()

■ DecompressSequenceBegin()

■ SetDSequenceTransferMode()

■ DecompressSequenceFrameS()

■ CDSequenceEnd()

and other calls.

Unlike the previous None codec, there is a negligible penalty for startup, and
matrix changes. In particular, the matrix can be changed every frame with no
degradation of the frame rate. Thus, it can be used for immersive imaging
applications, where a series of images are embedded in 3D.

For more information, see Ice Floe Note #23 at

http://developer.apple.com/quicktime/icefloe/dispatch023.html

The new enhanced None codec can be used as a general texture-mapped
rendering and compositing engine, when accessed directly through the API.
However, it is also invoked automatically by the Image Compression Manager
(ICM) to assist other codecs, by the Sprite Media to implement animation, and
by others.

Additional Still Image Metadata Support
in Mac OS 9 and Windows 1

The JPEG and TIFF graphics exporters should be able to create Exif files
containing application-specified metadata and thumbnail images. QuickTime
for Mac OS X (10.1) provided this support, which is now also available in
Mac OS 9 and Windows.

Indexed Image Types 1

Several graphics importers support access to individual images within a
multiple-image file. By using the GraphicsImportGetImageCount and
GraphicsImportSetImageIndex routines, you can select an individual layer from a
Photoshop file, or an individual resolution from a multi-resolution FlashPix file,

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

122 Additional Still Image Metadata Support in Mac OS 9 and Windows

© Apple Computer, Inc July, 2002

for example. However, there has not been a way to distinguish between
different types of indexed images: thumbnail, layer, page, resolution, etc.
Although applications can sometimes use the file type to suggest the
interpretation, this inhibits them from being able to take full advantage of new
third-party graphics importers. Furthermore, some formats, such as TIFF, can
support a variety of indexed image types.

The user data type kQTIndexedImageType has now been defined for graphics
importers to indicate what a particular indexed image is. The following sample
code shows how to determine whether the second image in a file is a
thumbnail.

Boolean IsSecondImageThumbnail(GraphicsImportComponent gi)
{
 OSErr err;
 unsigned long saveIndex = 1;
 UserData userData = nil;
 Handle h = nil;
 Boolean isThumbnail = false;
 long count, i;

 GraphicsImportGetImageIndex(gi, &saveIndex);
 err = GraphicsImportSetImageIndex(gi, 2);
 if(err) goto bail;
 err = NewUserData(&userData);
 if(err) goto bail;
 err = GraphicsImportGetMetaData(gi, userData);
 if(err) goto bail;
 h = NewHandle(0);
 err = MemError();
 if(err) goto bail;
 err = GetUserData(userData, h, kQTIndexedImageType, 1);
 if(err) goto bail;
 // Is kQTIndexedImageIsThumbnail present in the list?
 count = GetHandleSize(h) / sizeof(OSType);
 for(i = 0; i < count; i++) {
 if(EndianU32_NtoB(kQTIndexedImageIsThumbnail) == ((OSType *)*h)[
i]) {
 isThumbnail = true;
 break;
 }
 }

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Additional Still Image Metadata Support in Mac OS 9 and Windows 123
© Apple Computer, Inc July, 2002

bail:
 if(userData) DisposeUserData(userData);
 if(h) DisposeHandle(h);
 GraphicsImportSetImageIndex(gi, saveIndex);
 return isThumbnail;
}

Alpha Modes 1

The user data type kQTAlphaMode has been defined to allow graphics importers
to indicate the recommended interpretation of an image’s alpha channel, if
known. For example, a graphics importer could indicate that the image data has
been premultiplied with the alpha channel against a black background by
reporting a metadata item of type kQTAlphaMode and value
graphicsModePreBlackAlpha. If the image data has not been premultiplied, it
would report graphicsModeStraightAlpha.

The depth value of 32 in an image description indicates the presence of an alpha
channel.

Extracted TIFF and Exif Metadata 1

The TIFF graphics importer can extract metadata from a variety of TIFF tags for
which QuickTime does not have standard user data type codes. Rather than
define an individual code for each TIFF tag imported in this way, the graphics
importer constructs user data type codes from the TIFF tags by adding the TIFF

Image Data User Data Type

Not premultiplied graphicsModeStraightAlpha

Premultiplied with alpha channel
against black background

graphicsModePreBlackAlpha

Premultiplied with alpha channel
against white background

graphicsModePreWhiteAlpha

Premultiplied with alpha channel
against other color

graphicsModePreMulColorAlpha;
color indicated in
kQTAlphaModePreMulColor value

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

124 Additional Still Image Metadata Support in Mac OS 9 and Windows

© Apple Computer, Inc July, 2002

tag values (which are unsigned 2-byte integers) to defined prefix values (which
fill in the two most significant bytes).

The following fields in the main TIFF directory are translated to standard
QuickTime user data types:

The following fields in the main TIFF directory are translated to user data using
the prefix value kQTTIFFUserDataPrefix:

■ Orientation (0x0112)

■ TransferFunction (0x012D)

■ WhitePoint (0x013E)

■ PrimaryChromaticities (0x013F)

■ ColorMap (0x0140)

■ TransferRange (0x0156)

■ YCbCrCoefficients (0x0211)

■ YCbCrPositioning (0x0213)

■ ReferenceBlackWhite (0x0214)

■ ModelPixelScale (0x830E)

■ ModelTransformation (0x85D8)

TIFF Field User Data Type

DocumentName kUserDataTextFullName

ImageDescription kUserDataTextInformation

Make kUserDataTextMake

Model kUserDataTextModel

Software kUserDataTextSoftware

DateTime kUserDataTextCreationDate

Artist kUserDataTextArtist

HostComputer kUserDataTextHostComputer

Copyright kUserDataTextCopyright

IPTC (0x8469) kUserDataIPTC

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New APIs For Creating Exif Files 125
© Apple Computer, Inc July, 2002

■ ModelTiepoint (0x8482)

■ GeoKeyDirectory (0x87AF)

■ GeoDoubleParams (0x87B0)

■ GeoAsciiParams (0x87B1)

■ IntergraphMatrix (0x8480)

In Exif TIFF files, all fields in the Exif directory are translated to user data using
the prefix value kQTTIFFExifUserDataPrefix. All fields in a GPS directory are
translated to user data using the prefix value kQTTIFFExifGPSUserDataPrefix.

The TIFF graphics exporter also supports storing the following user data types
in exported TIFF files:

User Data TypeTIFF Field

kUserDataTextFullName DocumentName

kUserDataTextInformation ImageDescription

kUserDataTextMake Make

kUserDataTextModel Model

kUserDataTextArtist Artist

kUserDataTextCopyright Copyright

Software, DateTime, and HostComputer are written automatically.

In Exif mode, the TIFF graphics exporter will also write tags defined in the Exif
version 2.1 specification by reversing the kQTTIFFExifUserDataPrefix and
kQTTIFFExifGPSUserDataPrefix mappings.

In Exif mode, the JPEG graphics exporter supports all the same metadata fields
as the TIFF graphics exporter.

Note that UserData item data is always stored big-endian. The TIFF graphics
importer and graphics exporter perform whatever translation is necessary.

New APIs For Creating Exif Files 1

The following are a group of new APIs available on Mac OS X, Mac OS 9, and
Windows for creating Exif files.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

126 New APIs For Creating Exif Files

© Apple Computer, Inc July, 2002

GraphicsExportSetExifEnabled 1

Sets whether or not the graphics exporter component should create Exif files.

ComponentResult GraphicsExportSetExifEnabled (GraphicsExportComponent ci,
Boolean enableExif);

ci The component instance that identifies your connection to the
graphics exporter component.

enableExif Indicates whether to turn Exif export on or off.

DISCUSSION

Turning on Exif export disables incompatible settings, such as grayscale JPEG
and compressed TIFF, and enables export of Exif metadata. Use the
GraphicsExportSetMetaData routine to supply Exif metadata.

This routine is only supported by the TIFF and JPEG graphics exporters.

GraphicsExportGetExifEnabled 1

Returns the current Exif export setting.

ComponentResult GraphicsExportGetExifEnabled (
 GraphicsExportComponent ci,
 Boolean * exifEnabled);

ci The component instance that identifies your connection to the
graphics exporter component.

enableExif Points to a variable to receive the current Exif export setting.

DISCUSSION

This routine is only supported by the TIFF and JPEG graphics exporters.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New APIs For Creating Exif Files 127
© Apple Computer, Inc July, 2002

GraphicsExportSetThumbnailEnabled 1

Sets whether or not the graphics exporter component should create an
embedded thumbnail inside the exported file.

ComponentResult GraphicsExportSetThumbnailEnabled (
 GraphicsExportComponent ci,
 Boolean enableThumbnail,
 long maxThumbnailWidth,
 long maxThumbnailHeight);

ci The component instance that identifies your connection to the
graphics exporter component.

enableThumbnail
Indicates whether thumbnail creation should be turned on or
off.

maxThumbnailWidth
The maximum width for created thumbnails.

maxThumbnailHeight
The maximum height for created thumbnails. If one maximum
dimension is zero, only the other will be used. If both maximum
dimensions are 0, the graphics exporter will decide for itself.

DISCUSSION

This routine also sets optional maximum dimensions for the thumbnail. The
graphics exporter will not change the aspect ratio of the image when creating
the thumbnail; nor will it create a thumbnail larger than the image.

This routine is currently only supported by the TIFF and JPEG graphics
exporters. The JPEG graphics exporter can only create thumbnails when writing
Exif files.

GraphicsExportGetThumbnailEnabled 1

Returns the current thumbnail export settings.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

128 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

ComponentResult GraphicsExportGetThumbnailEnabled (
 GraphicsExportComponent ci,
 Boolean * thumbnailEnabled,
 long * maxThumbnailWidth,
 long * maxThumbnailHeight);

ci The component instance that identifies your connection to the
graphics exporter component.

thumbnailEnabled
Points to a variable to receive the current thumbnail setting.
Pass NULL if you do not want to receive this information.

maxThumbnailWidth
Points to a variable to receive the current maximum thumbnail
width. Pass NULL if you do not want to receive this
information.

maxThumbnailHeight
Points to a variable to receive the current maximum thumbnail
height. Pass NULL if you do not want to receive this
information.

DISCUSSION

This routine is currently only supported by the TIFF and JPEG graphics
exporters.

Improved Movie Toolbox Support for Data Handlers 1

QuickTime 6 enhances the ability of third-party developers to add new types of
data references through the introduction of QuickTime data handler
components. These are called custom data handlers.

Background 1

QuickTime has always had two ways to reference storage of media data.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 129
© Apple Computer, Inc July, 2002

The first is through Mac OS-style file specification records known as FSSpec
records. These FSSpec records are used by the Mac OS toolbox to reference files
on disk and can describe any file in the file system.

The other type of storage reference is through a QuickTime abstraction known
as a data reference. Data references are handles to blocks of data describing the
location of data to be either read or written. The type of reference is described
by a 4 char code (an OSType) and is used to select the QuickTime
component––a data handler component––that performs the actual I/O
operations.

The currently defined data handler types available with QuickTime are the
following:

■ rAliasType = FOUR_CHAR_CODE(‘alis’)

■ URLDataHandlerSubType = FOUR_CHAR_CODE('url ')

■ HandleDataHandlerSubType = FOUR_CHAR_CODE('hndl')

■ PointerDataHandlerSubType = FOUR_CHAR_CODE('ptr ')

■ ResourceDataHandlerSubType = FOUR_CHAR_CODE('rsrc')

■ NullDataHandlerSubType = FOUR_CHAR_CODE('null')

Note
The rAliasType data reference type manages access to files.
The reference itself is an Alias handle and can describe any
file describable by a FSSpec record.

Data Handlers and the New QuickTime APIs 1

Although the QuickTime software architecture provides rich support for both
FSSpecs and data references, some APIs have not supported data references as
fully as possible. This has meant that certain operations could only be
performed on files described by FSSpec records. These operations, then, could
not be performed with data handler components, either those provided by
QuickTime or those that were custom.

This section discusses a group of new APIs in Movies.h that accept a data
reference where an older call accepted an FSSpec or a data handler where a file
reference.

The goal is twofold: (1) to support the writing of custom data handlers, and (2)
to ensure that data references can be used wherever a File Manager API might
have only existed before.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

130 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

Table 3 describes the mapping of old calls to new calls:

Table 3 A mapping of old data handler calls to new data handler calls

PutMovieIntoStorage 1

Writes a movie in a given file managed by the data handler.

OSErr PutMovieIntoStorage (Movie theMovie,
DataHandler dh,
const wide *offset,
unsigned long maxSize);

theMovie A movie identifier. Your application obtains this identifier from
such functions as NewMovie (II–1098), NewMovieFromFile (II–1110),
and NewMovieFromHandle (II–1113).

dh A data handler for the data fork of the given storage. You pass
in an open write path in the dh parameter.

offset A pointer to a value that indicates where the movie should be
written.

maxSize The largest number of bytes that may be written.

function result You can access Movie Toolbox error returns through
GetMoviesError (I–505) and GetMoviesStickyError (I–506), as
well as in the function result. See “Error Codes” (IV–2718).

Old Calls New Calls
CreateMovieFile CreateMovieStorage

OpenMovieFile OpenMovieStorage

CloseMovieFile CloseMovieStorage

DeleteMovieFile DeleteMovieStorage

AddMovieResource AddMovieToStorage

UpdateMovieResource UpdateMovieInStorage

PutMovieIntoDataFork64 PutMovieIntoStorage

NewMovieFromDataFork64 NewMovieFromStorageOffset

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 131
© Apple Computer, Inc July, 2002

DISCUSSION

If you are writing a custom data handler, make sure that the following data
handler APIs are implemented:

■ DataHGetDataRef

■ DataHWrite64

■ DataHWrite, if not support 64-bit offsets

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

CreateMovieStorage 1

Creates an empty storage to hold the movie which references the data reference,
and opens a data handler to the movie file with write permission.

CreateMovieStorage (Handle dataRef,
OSType dataRefType,
OSType creator,
ScriptCode scriptTag,
long createMovieFileFlags,
DataHandler * outDataHandler,
Movie * newmovie);

dataRef A data reference to the storage for the movie file to be created.

dataRefType The type of data reference.

creator The creator value for the new file.

scriptTag The script in which the movie file should be created. Use the
Script Manager constant smSystemScript to use the system
script; use the smCurrentScript constant to use the current script.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

132 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

createMovieFileFlags

Controls movie file creation flags (see below).

outDataHandler

A pointer to a field that is to receive the data handler for the
opened movie file. Your application must use this value when
calling other Movie Toolbox functions that work with movie
files. If you set this parameter to NIL, the Movie Toolbox creates
the movie file but does not open the file.

newmovie A pointer to a field that is to receive the identifier of the new
movie. CreateMovieStorage returns the identifier of the new
movie. If the function could not create a new movie, it sets this
returned value to NIL. If you set this parameter to NIL, the
Movie Toolbox does not create a movie.

function result You can access Movie Toolbox error returns through
GetMoviesError (I–505) and GetMoviesStickyError (I–506), as
well as in the function result. See “Error Codes” (IV–2718).

createMovieFileFlags Constants

createMovieFileDeleteCurFile

Indicates whether to delete an existing file. If you set this flag to
1, the Movie Toolbox deletes the file (if it exists) before creating
the new movie file. If you set this flag to 0 and the file specified
by the dataRef parameter already exists, the Movie Toolbox uses
the existing file.

createMovieFileDontCreateMovie

Controls whether CreateMovieStorage creates a new movie in
the movie file. If you set this flag to 1, the Movie Toolbox does
not create a movie in the new movie file. In this case, the
function ignores the newmovie parameter. If you set this flag to 0,
the Movie Toolbox creates a movie and returns the movie
identifier in the field referred to by the newmovie parameter.

createMovieFileDontOpenFile

Controls whether CreateMovieStorage opens the new movie file.
If you set this flag to 1, the Movie Toolbox does not open the
new movie file. In this case, the function ignores the

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 133
© Apple Computer, Inc July, 2002

outDataHandler parameter. If you set this flag to 0, the Movie
Toolbox opens the new movie file and returns an instance of a
data handler in the outDataHandler parameter.

newMovieActive

Controls whether the new movie is active. Set this flag to 1 to
make the new movie active. A movie that does not have any
tracks can still be active. When the Movie Toolbox tries to play
the movie, no images are displayed, because there is no movie
data. You can make a movie active or inactive by calling
SetMovieActive (III–1654).

newMovieDontAutoAlternate

Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this flag to
1, the Movie Toolbox does not automatically select tracks for the
movie; you must enable tracks yourself.

DISCUSSION

If you are writing a custom data handler, make sure that the following data
handler APIs are implemented:

■ DataHGetDataRef

■ DataHWrite64

■ DataHWrite, if not support 64-bit offsets

Note
If createMovieFileDeleteCurFile is passed, the data handler
API requirements are:

■ DataHDeleteFile, if createMovieFileDeleteCurFile is passed

■ DataHCreateFileWithFlags or DataHCreateFile

■ DataHOpenForRead/DataHOpenForWrite

■ The data hanlder must support both kDataHCanRead and kDataHCanWrite.

VERSION NOTES

Introduced in QuickTime 6.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

134 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

OpenMovieStorage 1

Opens a data handler that specifies movie storage.

OpenMovieStorage (Handle dataRef,
OSType dataRefType,
long flags,
DataHandler * outDataHandler);

dataRef A data reference to a handle for the movie to be stored.

dataRefType The type of data reference.

flags (See below.)

outDataHandler

A pointer to a field that is to receive the data handler for the
opened movie file. Your application must use this value when
calling other Movie Toolbox functions that work with movie
files.

Flags:

kDataHCanRead

kDataHCanWrite

DISCUSSION

This routine is rarely used.

VERSION NOTES

Introduced in QuickTime 6.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 135
© Apple Computer, Inc July, 2002

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

CloseMovieStorage 1

Closes an open movie storage.

CloseMovieStorage (DataHandler dh);

dh A data handler.

DISCUSSION

This routine is equivalent to CloseComponent.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

DeleteMovieStorage 1

Deletes a movie storage.

DeleteMovieStorage (Handle dataRef,
OSType dataRefType);

dataRef A data reference to the movie storage to be deleted.

dataRefType The type of data reference.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

136 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

DISCUSSION

If you are writing a custom data handler, make sure that the following data
handler API is implemented:

■ DataHDeleteFile

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

AddMovieToStorage 1

AddMovieToStorage (Movie theMovie,
DataHandler dh);

theMovie The movie for this operation.

dh A data handler.

DISCUSSION

Note
AddMovieToStorage internally used PutMovieIntoStorage.

If you are writing a custom data handler, make sure that the following data
handler APIs are implemented:

■ DataHScheduleData64 and DataHGetFileSize64

■ DataHScheduleData and DataHGetFileSize, if not supporting 64-bit file offsets
DataHWrite64

■ DataHWrite, if not support 64-bit offsets

■ DataHGetDataRef

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 137
© Apple Computer, Inc July, 2002

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

UpdateMovieInStorage 1

Replaces the contents of a movie resource in a specified movie storage.

UpdateMovieInStorage (Movie theMovie,
DataHandler dh);

theMovie The movie for this operation. Your application obtains this
movie identifier from such functions as NewMovie (II–1098),
NewMovieFromFile (II–1110), and NewMovieFromHandle (II–1113).

dh A data handler.

DISCUSSION

This routine, which is similar to OpenMovieStorage, replaces the contents of a
movie resource in a specified movie storage.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

138 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

FlattenMovieDataToDataRef 1

Performs a flattening operation to the destination data reference.

Movie FlattenMovieDataToDataRef (Movie theMovie,
long movieFlattenFlags,
Handle dataRef,
OSType dataRefType,
OSType creator,
ScriptCode scriptTag,
long createMovieFileFlags);

theMovie The movie for this operation. Your application obtains this
movie identifier from such functions as as NewMovie (II–1098),
NewMovieFromFile (II–1110), and NewMovieFromHandle (II–1113).

movieFlattenFlags

Contains flags (see below) that control the process of adding
movie data to the new movie file. These flags affect how the
toolbox adds movies to the new movie file later. Set unused
flags to 0.

dataRef A data reference to the handle for the movie file to be flattened.

dataRefType The type of data reference.

creator The creator value for the new file.

scriptTag Contains constants (see below) that specify the script in which
the movie file should be created.

createMovieFileFlags

Contains flags (see below) that control file creation options.

function result The identifier of the new movie. If the function could not create
the movie, it sets this returned identifier to NIL.

createMovieFileFlags Constants

flattenAddMovieToDataFork

Causes the movie to be placed in the data fork of the new movie file.
You may use this flag to create single-fork movie files, which can be
more easily moved to computer systems other than Macintosh.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 139
© Apple Computer, Inc July, 2002

flattenDontInterleaveFlatten

Allows you to disable the Movie Toolbox’s data storage
optimizations. By default, the Movie Toolbox stores movie data
in a format that is optimized for the storage device. Set this flag
to 1 to disable these optimizations.

flattenActiveTracksOnly

Causes the Movie Toolbox to add only enabled movie tracks to
the new movie file. Use SetTrackEnabled (III–1705), to enable
and disable movie tracks.

flattenCompressMovieResource

Compresses the movie resource stored in the file’s data fork, but
not the movie resource stored in the resource fork on Mac OS
systems.

flattenForceMovieResourceBeforeMovieData

Set this flag when you are creating a fast start movie, to put the
movie resource at the front of the resulting movie file.

scriptTag Constants

smSystemScript

Use the system script.

smCurrentScript

Use the current script.

nextTimeFlags Constants

createMovieFileDeleteCurFile

Indicates whether to delete an existing file. If you set this flag to
1, the Movie Toolbox deletes the file (if it exists) before creating
the new movie file. If this flag is set to 0 and the file specified by
the dataRef parameter already exists, the Movie Toolbox uses
the existing file. In this case, the toolbox ensures that the file has
both a data and a resource fork. If this flag isn’t set, the data is
appended to the file.

createMovieFileDontCreateMovie

createMovieFileDontCreateMovie

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

140 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

Controls whether CreateMovieFile creates a new movie in the
movie file. If you set this flag to 1, the Movie Toolbox does not
create a movie in the new movie file. In this case, the function
ignores the newmovie parameter. If you set this flag to 0, the
Movie Toolbox creates a movie and returns the movie identifier
in the field referred to by the newmovie parameter.

createMovieFileDontOpenFile

Controls whether CreateMovieFile opens the new movie file. If
you set this flag to 1, the Movie Toolbox does not open the new
movie file. In this case, the function ignores the resRefNum
parameter. If you set this flag to 0, the Movie Toolbox opens the
new movie file and returns its reference number into the field
referred to by the resRefNum parameter.

DISCUSSION

This routine performs a flattening operation to the destination data reference.

Note
With previous versions of QuickTime, it was possible to
flatten a Movie to a data reference. However, doing so was
not necessarily obvious. It involved calling
FlattenMovieData while doing the following:

(1) Passing the address of a DataReferenceRecord in place of the address of a
file’s FSSpec; and

(2) Including the flattenFSSpecPtrIsDataRefRecordPtr flag in the
movieFlattenFlags parameter.

FlattenMovieDataToDataRef now performs this same work on the client’s behalf.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 141
© Apple Computer, Inc July, 2002

NewMovieFromStorageOffset 1

NewMovieFromStorageOffset (
Movie * theMovie,
DataHandler dh,
const wide * fileOffset,
short newMovieFlags,
Boolean * dataRefWasChanged);

theMovie A pointer to a field that is to receive the new movie’s identifier.
If the function cannot load the movie, the returned identifier is
set to NIL.

dh A data handler to a file that is already open.

fileOffset A pointer to the starting file offset of the atom in the data fork of
the file specified by the dh parameter.

newMovieFlags

Flags (see below) that control characteristics of the new movie.

dataRefWasChanged

A pointer to a Boolean value. The Movie Toolbox sets the value
to TRUE if any of the movie’s data references were changed. Use
UpdateMovieInStorage (page 137) to preserve these changes. If
you do not want to receive this information, set the
dataRefWasChanged parameter to NIL.

function result If the Movie Toolbox cannot completely resolve all data
references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as
this through GetMoviesError (I–505) and GetMoviesStickyError
(I–506), as well as in the function result. See “Error Codes”
(IV–2718).

newMovieFlags Constants

newMovieActive

Controls whether the new movie is active. Set this flag to 1 to
make the new movie active. A movie that does not have any
tracks can still be active. When the Movie Toolbox tries to play

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

142 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

the movie, no images are displayed, because there is no movie
data. You can make a movie active or inactive by calling the
SetMovieActive (III–1654) function.

newMovieDontAutoAlternate

Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this flag to
1, the Movie Toolbox does not automatically select tracks for the
movie; you must enable tracks yourself.

newMovieDontResolveDataRefs

Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
Movie Toolbox tries to completely resolve all data references in
the resource. This may involve searching for files on remote
volumes. If you set this flag to 1, the Movie Toolbox only looks
in the specified file. If the Movie Toolbox cannot completely
resolve all the data references, it still returns a valid movie
identifier. In this case, the Movie Toolbox also sets the current
error value to couldNotResolveDataRef.

newMovieDontAskUnresolvedDataRefs

Controls whether the Movie Toolbox asks the user to locate files.
If you set this flag to 0, the Movie Toolbox asks the user to locate
files that it cannot find on available volumes. If the Movie
Toolbox cannot locate a file even with the user’s help, the
function returns a valid movie identifier and sets the current
error value to couldNotResolveDataRef.

DISCUSSION

This routine serves the same purpose for data handlers as
NewMovieFromDataFork64 serves for movie file references. The API reads the
'moov' resource found at fileOffset and creates a Movie. The data handler
parameter should be an open data handler component instance for the storage
holding the 'moov' resource. The newMovieFlags and dataRefWasChanged
parameters are interpreted identically to those same parameters to
NewMovieFromDataFork64.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 143
© Apple Computer, Inc July, 2002

Note
Unlike NewMovieFromDataFork and NewMovieFromDataFork64,
there is no special interpretation of the file offset of –1. With
those APIs, -1 indicates the current file position on the
fileReference used. However, since data handlers have no
notion of a current file position, there is no support for this
magic value.

If you are writing a custom data handler, make sure that the following data
handler APIs are implemented:

■ DataHScheduleData64 and DataHGetFileSize64

■ DataHScheduleData and DataHGetFileSize, if not supporting 64-bit file offsets

■ DataHGetDataRef

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

ChooseMovieClock 1

Provides the client with a way to look through media handlers and find the best
clock.

void ChooseMovieClock (Movie m,
long flags);

DISCUSSION

This routine asks the Movie to find the first media handler that has a custom
Clock (it calls MediaGetClock) and to start using that as the Movie’s master
timebase’s clock (by using SetMovieMasterClock).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

144 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

ChooseMovieClock is used to tie the Movie’s master timebase to a sound clock if
there is a sound track. If there is no sound track, the microseconds clock is used
as the master timebase.

VERSION NOTES

Introduced in QuickTime 6.

SEE ALSO

Technote 2052 discusses the ChooseMovieClock API in detail, explaining how this
call should be used with Video Output Components and in instances where
SetMovieMasterClock was previously being used to reset a movie’s clock.

The Technote is focused primarily on developers who are using Video Output
Components or modifying a movie’s master clock by calling
SetMovieMasterClock.

The Note is available at

http://developer.apple.com/technotes/tn/tn2052.html

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

DataHGetInfo 1

Queries the information from a data handler.

ComponentResult DataHGetInfo(DataHandler dh,
OSType what,
void *info);

what The information you are requesting.

info A pointer to the information requested. Currently, no selectors
are defined.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 145
© Apple Computer, Inc July, 2002

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

DataHDeleteFile 1

Deletes the file that the data handler references

ComponentResult DataHDeleteFile(DataHandler dh);

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

DataHSetMovieUsageFlags 1

ComponentResult DataHSetMovieUsageFlags(
DataHandler dh,
long flags);

dh A data handler.

flags The following flags are defined:

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

146 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

enum {
kDataHMovieUsageDoAppendMDAT = 1L << 0

// if set, the datahandler
// should append wide and mdat atoms in append call.

};

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

OpenADataHandler Extended 1

Predictably, you cannot use the OpenADataHandler (II-1159) routine to open data
handlers to non-existent files. Attempting to do results in the function returning
the error couldNotResolveDataRef and setting the returned data handler to NIL.

In QuickTime 6, this is still the case for requests to open data handlers for
read-only access. However, if you make a request to open a data handler for
write access (by passing kDataHCanWrite), OpenADataHandler will now return a
configured data handler instead of NIL and an error, if the file doesn’t exist.

If you pass a kDataHCanWrite, a data handler will be created which you can use
with DataHCreateFileWithFlags or with DataHCreateFile.

Advanced APIs 1

Two additional APIs have been introduced in QuickTime 6. Although their
usage by developers may be rare, they are discussed here for the sake of
completeness.

PutMovieForDataRefIntoHandle and NewMovieForDataRefFromHandle can be used
by applications that directly read and write 'moov' atoms (also known as movie
resources or public movies) containing data references that are self-references to
the files read or written.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 147
© Apple Computer, Inc July, 2002

By way of quick review, data references within the media of movies may refer
to either external files through full data references or to the file containing the
‘moov’ through a shorthand self-reference technique. This self-reference
involves setting a data reference attribute to include the following flags:

kDataRefIsSelfContained = (1 << 0)

and not including the full data reference. All such references are resolved to the
file originally containing the 'moov' atom or public movie.

The already available PutMovieIntoHandle (II-1183) routine will create public
movies but cannot update data references to be self-references. Also,
NewMovieFromHandle can create a Movie from a public movie but cannot do so for
public movie handles, including self-references. These limitations mean that
these APIs cannot be used by applications that

(1) want to perform the direct reading of 'moov' resources from a file and then
create a Movie or

(2) create a public movie containing self-references and then write that public
movie to a file.

PutMovieForDataRefIntoHandle and NewMovieFroDataRefFromHandle
accommodate the passing of the data reference that should be interpreted as the
location of the 'moov' atom.

PutMovieForDataRefIntoHandle 1

OSErr PutMovieForDataRefIntoHandle (
Movie theMovie,
Handle dataRef,
OSType dataRefType,
Handle publicMovie);

theMovie The movie for this operation. Your application obtains this
movie identifier from such functions as NewMovie (II–1098),
NewMovieFromFile (II–1110), and NewMovieFromHandle (II–1113).

dataRef A data reference to the storage in which the movie will be
written.

dataRefType The type of data reference.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

148 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

publicMovie The handle that is to receive the new movie resource. The
function resizes the handle if necessary.

function result You can access Movie Toolbox error returns through
GetMoviesError (I–505) and GetMoviesStickyError (I–506), as
well as in the function result. See “Error Codes” (IV–2718).

DISCUSSION

This routine is roughly equivalent to the PutMovieIntoHandle API (II-1183)––but
with one important difference. If the data reference and data reference type is
passed, all media references to the same storage are converted to self-references
in the resulting public movie handle. This ‘moov’ atom can be then written to
the storage.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

NewMovieForDataRefFromHandle 1

OSErr NewMovieForDataRefFromHandle (Movie *theMovie,
Handle h,
short newMovieFlags,
Boolean *dataRefWasChanged,
Handle dataRef,
OSType dataRefType);

theMovie A pointer to a field that is to receive the new movie’s identifier.
If the function cannot load the movie, the returned identifier is
set to NIL.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 149
© Apple Computer, Inc July, 2002

h A handle to the movie resource from which the movie is to be
loaded.

newMovieFlags

Flags (see below) that control the operation of
NewMovieForDataRefFromHandle. Be sure to set unused flags to 0.

dataRefWasChanged

A pointer to a Boolean value. The toolbox sets the value to TRUE
if any references were changed. Set the dataRefWasChanged
parameter to NIL if you don’t want to receive this information.
function result If the Movie Toolbox cannot completely resolve
all data references, it sets the current error value to
couldNotResolveDataRef. You can access error returns such as
this through GetMoviesError (I–505) and GetMoviesStickyError
(I–506), as well as in the function result. See “Error Codes”
(IV–2718).

dataRef A data reference to the storage from which the movie was
retrieved.

dataRefType The type of data reference.

newMovieFlags Constants

newMovieActive

Controls whether the new movie is active. Set this flag to 1 to
make the new movie active. You can make a movie active or
inactive by calling SetMovieActive (III–1654).

newMovieDontResolveDataRefs

Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on remote
volumes. If you set this flag to 1, the Movie Toolbox only looks
in the specified file. If the Movie Toolbox cannot completely
resolve all the data references, it still returns a valid movie
identifier. In this case, the Movie Toolbox also sets the current
error value to couldNotResolveDataRef.

newMovieDontAskUnresolvedDataRefs

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

150 Improved Movie Toolbox Support for Data Handlers

© Apple Computer, Inc July, 2002

Controls whether the Movie Toolbox asks the user to locate files.
If you set this flag to 0, the Movie Toolbox asks the user to locate
files that it cannot find on available volumes. If the Movie
Toolbox cannot locate a file even with the user’s help, the
function returns a valid movie identifier and sets the current
error value to couldNotResolveDataRef.

newMovieDontAutoAlternate

Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this flag to
1, the Movie Toolbox does not automatically select tracks for the
movie; you must enable tracks yourself.

DISCUSSION

This routine creates a Movie from the public movie handle in the same way as
NewMovieFromHandle does––but with one important difference. If the public
handle contains media data references that are self-references,
NewMovieForDataRefFromHandle can convert self-references to references to the
reference specified by dataRef and dataRefType. All other data references are not
changed.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Improved Movie Toolbox Support for Data Handlers 151
© Apple Computer, Inc July, 2002

MovieImportSetNewMovieFlags 1

Implemented by a movie import component to determine the flags originally
passed to NewMovieFromDataRef and from a file.

ComponentResult MovieImportSetNewMovieFlags(
MovieImportComponent ci,
long newMovieFlags);

ci A movie import component instance.

newMovieFlags

Flags (see below) that control the characteristics of the new
imported movie.

newMovieFlags Constants

newMovieActive

Controls whether the new movie is active. Set this flag to 1 to
make the new movie active. You can make a movie active or
inactive by calling SetMovieActive (III–1654).

newMovieDontResolveDataRefs

Controls how completely the Movie Toolbox resolves data
references in the movie resource. If you set this flag to 0, the
toolbox tries to completely resolve all data references in the
resource. This may involve searching for files on remote
volumes. If you set this flag to 1, the Movie Toolbox only looks
in the specified file. If the Movie Toolbox cannot completely
resolve all the data references, it still returns a valid movie
identifier. In this case, the Movie Toolbox also sets the current
error value to couldNotResolveDataRef.

newMovieDontAskUnresolvedDataRefs

Controls whether the Movie Toolbox asks the user to locate files.
If you set this flag to 0, the Movie Toolbox asks the user to locate
files that it cannot find on available volumes. If the Movie
Toolbox cannot locate a file even with the user’s help, the
function returns a valid movie identifier and sets the current
error value to couldNotResolveDataRef.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

152 New User Data APIs

© Apple Computer, Inc July, 2002

newMovieDontAutoAlternate

Controls whether the Movie Toolbox automatically selects
enabled tracks from alternate track groups. If you set this flag to
1, the Movie Toolbox does not automatically select tracks for the
movie; you must enable tracks yourself.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

New User Data APIs 1

QuickTime 6 introduces new UserData APIs that can be useful in copying
information from one UserData container to another. The operation performed
is controlled by a parameter to the APIs that describes one of two different copy
rules or dispositions. While there is a routine to copy from one UserData
container to another, there are also convenience APIs to copy metadata between
the UserData containers at the Movie, Track and Media levels.

The currently supported copy rules are:

■ kQTCopyUserDataReplace
Delete all user data items from the destination UserData container and then
add all source items to the destination.

■ kQTCopyUserDataMerge
Append all source items from the source UserData container to the
destination UserData container. Does not delete items from the destination
container.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New User Data APIs 153
© Apple Computer, Inc July, 2002

CopyMovieUserData 1

Performs copying from the source Movie’s UserData to the destination Movie
UserData.

OSErr CopyMovieUserData (Movie srcMovie,
Movie dstMovie,
OSType copyRule);

srcMovie Movie containing source UserData.

dstMovie Movie containing destination UserData

copyRule Specifies one of two different approaches to copying source
metadata items to the destination container. The supported rules
are:

kQTCopyUserDataReplace
kQTCopyUserDataMerge

DISCUSSION

This routine performs copying from the source Movie’s UserData to the
destination Movie UserData.

Note
CopyMovieUserData is equivalent to the following:

CopyUserData(GetMovieUserData(srcMovie),
GetMovieUserData(dstMovie),
copyRule);

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

154 New User Data APIs

© Apple Computer, Inc July, 2002

CopyTrackUserData 1

Performs copying from the source Track’s UserData to the destination Track’s
UserData.

OSErr CopyTrackUserData (Track srcTrack,
Track dstTrack,
OSType copyRule);

srcTrack Track containing source UserData.

dstTrack Track containing destination UserData.

copyRule Specifies one of two different approaches to copying source
metadata items to the destination container. The supported rules
are:

kQTCopyUserDataReplace
kQTCopyUserDataMerge

DISCUSSION

This routine performs copying from the source Track’s UserData to the
destination Track’s UserData.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New User Data APIs 155
© Apple Computer, Inc July, 2002

CopyMediaUserData 1

Performs copying from the source Media’s UserData to the destination Media’s
UserData.

OSErr CopyMediaUserData (Media srcMedia,
Media dstMedia,
OSType copyRule);

srcMedia Media containing source UserData.

dstMedia Media containing destination UserData.

copyRule Specifies one of two different approaches to copying source
metadata items to the destination container. The supported rules
are:

kQTCopyUserDataReplace
kQTCopyUserDataMerge

DISCUSSION

This routine performs copying from the source Media’s UserData to the
destination Media’s UserData.

Note
CopyMediaUserData is equivalent to the following:

CopyUserData(GetMediaUserData(srcMedia),
GetMediaUserData(dstMedia),
copyRule);

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

156 New User Data APIs

© Apple Computer, Inc July, 2002

CopyUserData 1

Copies metadata items from the source UserData container to the destination
UserData container based on the rule specified.

OSErr CopyUserData (UserData srcUserData,
UserData dstUserData,
OSType copyRule);

srcUserData UserData container from which to copy metadata items.

dstUserData UserData container to which to copy the metadata items.

copyRule Specifies one of two different approaches to copying source
metadata items to the destination container. The supported rules
are:

kQTCopyUserDataReplace
kQTCopyUserDataMerge

DISCUSSION

CopyUserData copies metadata items from the source UserData container to the
destination UserData container based upon the rule specified. It can perform
either total replacement of all destination items or merge items from the source
into the destination container.

Note
The API detects if the source and destination UserData
containers are the same and does nothing in that case.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

QuickTime for Java Enhancements 157
© Apple Computer, Inc July, 2002

QuickTime for Java Enhancements 1

QuickTime 6 includes support for a number of new features and enhancements
in QuickTime for Java. These include

■ JDK 1.4 support. This is now part of the QTJava.dll. Developers will not need
to use the WinNativeHelper.dll in order for QuickTime for Java to work
properly with JDK 1.4 on Windows computers.

■ Introduction of the JQTCanvas class, a new lightweight version of the QTCanvas
class which supports scaling of Flash content.

■ A number of new QuickTime VR classes that encapsulate the various VR
atom types.

■ New classes in the quicktime.std.movies package. These include Idle
manager bindings

■ NextTaskNeededSooner
■ IdleDispatcher

■ Added support for MovieMedia Handler.

■ Fixed DataProcs in the Sequence Grabber.

■ Added a number of new classes that extend the client streaming
functionality to include support for stored movies.

■ New Sprite Media Handler calls for getting and setting sprite variables.

Support for JDK 1.4 1

QuickTime for Java now includes support for JDK 1.4 (Windows only). These
are internal changes that should be transparent to your application.

New JQTCanvas 1

JQTCanvas, a new class that has been added to the quicktime.app.display
package, is a lightweight version of the QTCanvas class. It is intended to behave
in exactly the same way as QTCanvas, but with the following enhancement: the
JQTCanvas class supports scaling of Flash content that is added to it via a

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

158 QuickTime for Java Enhancements

© Apple Computer, Inc July, 2002

moviePlayer. You may use the setFlashScaling(boolean) method to turn this
feature on and off. If you use this new feature, you may need to allocate extra
memory, since an offscreen buffer must be created that is the size of the
onscreen image.

New QTVR Authoring Classes 1

A number of new QuickTime VR classes have been added in this release of
QuickTime for Java. These classes encapsulate the various VR atom types, and
are designed to help developers who are doing QuickTime VR work. They
include

■ QTVRAtom

■ QTVRAngleRange

■ QTVRCubicFace

■ QTVRCubicView

■ QTVRHotSpotInfo

■ QTVRLinkHotSpot

■ QTVRWorldHeader

■ QTVRNodeHeader

■ QTVRNodeLocation

■ QTVRObjectSample

■ QTVRPanoImaging

■ QTVRPanoSample

■ QTVRString

■ QTVRTrackRefEntry

For more information on these new VR classes, refer to the JavaDocs
accompanying this release.

Improved QuickTime Client Streaming Support 1

A number of new classes have been added that extend QuickTime for Java
client streaming functionality to include support for stored movies. This
support is provided via the Sourcer object. These new classes include

■ Sourcer

■ SourcerCallbackParams

■ SourcerInitParams

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

QuickTime for Java Enhancements 159
© Apple Computer, Inc July, 2002

■ SourcerLoopParams

■ SourcerTrackParams

■ SourcerTimingParams

Note that the QuickTime for Java Client Streaming API is currently not
available on the Windows platform.

For more information on these new classes, refer to the JavaDocs accompanying
this release.

New Sprite Handler APIs 1

The following new sprite handler APIs have been added to this release of
QuickTime for Java:

■ Flashmediahandler.java

private static native int FlashMediaGetSupportedSwfVersion (
int mh,
byte[] path);

■ Movie.java

private static native short NewMovieForDataRefFromHandle (
int[] theMovie,
int publicMovieHandle,
short newMovieFlags,
byte[] dataRefWasChanged,
int dataRef,
int dataRefType);

private static native int FlattenMovieDataToDataRef (
int theMovie,
int movieFlattenFlags,
int dataRef,
int dataRefType,
int creator,
short scriptTag,
int createMovieFileFlags);

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

160 AppleScript Changes

© Apple Computer, Inc July, 2002

■ SpriteMediaHandler.java

private static native int SpriteMediaDisposeImage(int mh,
 int imageIndex);

private static native int SpriteMediaNewImage (int mh,
 byte[] imageURL);

AppleScript Changes 1

This section discusses the changes to AppleScript in QuickTime 6.

Recordability 1

QuickTime Player is now a recordable application. To take advantage of this
new capability, you must use QuickTime Player in conjunction with an
application that supports AppleEvent recording, such as Script Editor.

Using Script Editor to record a script, you need to make sure that both
QuickTime Player and Script Editor are running. Then you click the record
button in a script window. Any operation you perform in QuickTime Player
will be recorded in the open script document.

Most features of QuickTime Player are recordable with the following
exceptions:

■ Import and Export are not recordable

■ Sprite-related property panels are not recordable

■ Music Track Instruments property panel is not recordable

■ Printing operations are not recordable

The result of a AppleEvent recording session is rarely a finished script, but
rather more like a summary of the operations you would like performed. A
recorded script will have no error checking code nor if/then/else or repeat/
until structures. Quite often, a recorded script will merely demonstrate the
correct syntax for an operation and little more.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

AppleScript Changes 161
© Apple Computer, Inc July, 2002

Terminology Changes 1

QuickTime Player introduces a number of new commands, classes, and
properties, and well as modifications to existing terminology elements,
discussed in this section.

New Commands 1

The following new commands are introduced in QuickTime 6:

■ enter full screen

■ exit full screen

These two commands make it possible to enter and exit full screen mode
independent of movie playback. This means that in QuickTime 6 you can create
a script that will put the player in full screen mode and then perform other
operations, including opening and playing movies while remaining in full
screen mode. Once the script has finished presenting movies, it is necessary to
call exit full screen to restore the computer to its normal state.

enter full screen: Enter full screen video mode

enter full screen reference -- display
[bounds point] -- the desired target dimensions of the display

(height, width)
[background color rgb color] -- the background color

exit full screen: Exit full screen video mode

exit full screen reference -- display

The following script demonstrates how to use these two commands to enter full
screen mode, present a sequence of movies, then exit full screen mode:

tell display 1 to enter full screen
tell movie 1 to play
tell movie 2 to play
tell movie 3 to play
tell display 1 to exit full screen

The following commands perform matrix manipulation on tracks and movies.
While it is possible to achieve the same results by setting the matrix property

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

162 AppleScript Changes

© Apple Computer, Inc July, 2002

directly (see current matrix, below), these commands serve as useful shortcuts
and correspond to familiar menu commands and property window operations.

flip horizontal: Flip an object along the horizontal axis
flip horizontal reference -- the object to flip

flip vertical: Flip an object along the vertical axis
flip vertical reference -- the object to flip

resize: Scale an object
resize reference -- the object to scale

[by small real] -- the percent of current size
[around fixed point] -- the point to resize around

rotate: Rotate an object by an arbitrary amount
rotate reference -- the object to rotate

by small real -- the amount of rotation (in degrees)
[around fixed point] -- the point to rotate around

rotate left: Rotate an object 90° left
rotate left reference -- the object to rotate

rotate right: Rotate an object 90° right
rotate right reference -- the object to rotate

skew: Skew an object by an arbitrary amount
skew reference -- the object to skew

by fixed point -- the amount of skew
[around fixed point] -- the point to skew around

translate: Translate the object some distance
translate reference -- the object to translate

by fixed point -- the distance to translate

The replace command performs an operation equivalent to the Edit/Replace
menu item.

replace: Replace the current selection with an object from the clipboard
replace reference -- movie

The invert command inverts an image. This is primarily useful for inverting a
bitmap before using it set the new track mask property.

invert: Invert an object
invert reference -- the object to invert

The save export settings command is used to save the specified exporter
settings to a file. This file can then be used with the export command.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

AppleScript Changes 163
© Apple Computer, Inc July, 2002

save export settings: Save an exporters settings
save export settings

for AVI/BMP/DV stream/Fast Start QTVR Movie/FLC/hinted movie/
image sequence/interframe compressed VR object movie/MPEG4/picture/
QuickTime media link/QuickTime movie/AIFF/System 7 sound/wave/MuLaw/
standard MIDI/text file -- the desired file type

[to alias] -- the destination file
[replacing boolean] -- should the original file be deleted

first?

Enhanced Commands 1

Command export 1

The export command has additional export options: Fast Start QTVR Movie,
interframe compressed VR object movie, MPEG 4, and QuickTime media
link.

An optional parameter using settings preset has also been added that allows
the use of an export settings file (see save export settings command, above).

export: Export a movie or track to a file
export reference -- the movie or track to export

to alias -- the destination file
as AVI/BMP/DV stream/Fast Start QTVR Movie/FLC/hinted movie/

image sequence/interframe compressed VR object movie/MPEG4/picture/
QuickTime media link/QuickTime movie/AIFF/System 7 sound/wave/MuLaw/
standard MIDI/text file -- the desired file type

[using default settings/most recent settings] -- the export
settings to use

[using settings preset string] -- the name of the export
settings preset to use

[using settings alias] -- the file containing the export
settings

[replacing boolean] -- should the original file be deleted
first?

Command make 1

The make command can be used to create movie, track, frame and favorite
objects. The syntax for each is shown below:

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

164 AppleScript Changes

© Apple Computer, Inc July, 2002

make new movie with data {frame 6 of track "Video Track" of movie
"QuickTime Sample Movie"}

make new movie with data {track "Video Track" of movie "QuickTime
Sample Movie"}

make new track at first movie with data alias
“myharddrive.myimage.jpeg”

make new favorite with data "http://stream.qtv.apple.com/myevent.mov"
make new favorite with file "myharddrive:mymovie.mov"

New Properties 1

New Application Properties 1

The following Boolean properties can be set to show or hide the various
non-movie windows:

show favorites window boolean -- show the favorites window
show movie info window boolean -- show the movie info window
show welcome movie automatically boolean [r/o] -- always show the

hot picks movie when the application launches

New Movie Properties 1

The following properties control audio playback characteristics:

bass gain small integer -- the bass setting for the track
(-256..256) (not saved with the movie)

sound balance small integer -- the balance of the movie
(-128..128), where negative is left, 0 is center, and positive is right

treble gain small integer -- the treble setting for the movie
(-256..256) (not saved with movie)

preferred audio balance track track [r/o] -- the preferred track
to use for balance settings

preferred audio gain track track [r/o] -- the preferred track to
use for bass and treble gain settings

The color table property allows a scripter to specify a color palette for movies
that support palettes:

color table palette -- palette for the movie

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

AppleScript Changes 165
© Apple Computer, Inc July, 2002

The current chapter track property permits easy access to the current chapter
track of the movie:

current chapter track track [r/o] -- the currently active chapter
track (may differ by language)

The current matrix property describes the current transformation applied to the
movie:

current matrix matrix -- the matrix of the movie

The following boolean properties control user interface elements:

show detailed movie info window boolean -- show the movie property
window

show sound controls boolean -- show the sound controls in the LCD
show video controls boolean -- show the video controls

The following properties control the visual appearance of the movie and
perform actions corresponding to the video controls:

video brightness adjustment small real [r/o] -- the adjustment to
the video brightness (range is -1.0 to 1.0)

video contrast adjustment small real [r/o] -- the adjustment to
the video contrast (range is -1.0 to 1.0)

video tint adjustment small real [r/o] -- the adjustment to the
video tint (range is -0.25 to 0.25)

video color adjustment small real [r/o] -- the adjustment to the
video color

New Track Properties 1

The alternate track property permits one track to be specified as the alternate of
another. This is useful for making multi-language movies that automatically
enable a track based on the current system language.

alternate track [r/o] -- the alternate for this track

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

166 AppleScript Changes

© Apple Computer, Inc July, 2002

The following properties control audio playback characteristics of audio tracks:

bass gain small integer -- the bass setting for the track
(-256..256) (not saved with movie)

treble gain small integer -- the treble setting for the track
(-256..256) (not saved with movie)

The following properties control visual playback characteristics of visual tracks:

mask image -- the mask of the track
current matrix matrix -- the matrix of the track
transfer mode transfer mode unknown/dither copy/no dither copy/

blend/transparent/straight alpha/premul white alpha/premul black alpha/
straight alpha blend/composition -- the transfer mode of the track

New Classes 1

Class matrix 1

The matrix class describes a 3 x 3 transformation matrix which can be applied to
a movie or track. Commands such as rotate left and flip actually modify the
current matrix property of the target object. The contents of a matrix can be set
by a list of the following format: “{{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}}”.
This particular matrix is know as the identity matrix and describes an object in
its default state with no transformations applied. Constructing or manipulating
a matrix directly requires knowledge of matrix math operations.

Properties 1

class type class [r/o] -- the class
contents type class -- the contents of the matrix

Class Palette 1

A palette object is a list of rgb colors (see below). Some movies permit
specifying a palette which describes the set of colors to be used when
displaying the movie.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber User Interface 167
© Apple Computer, Inc July, 2002

Elements:

rgb color by numeric index

Properties 1

class type class [r/o] -- the class
contents type class -- the contents of the matrix

Class rgb color 1

The class describes a color using three magnitudes: one each for the red, green,
and blue color components.

Properties 1

class type class [r/o] -- the class
contents type class -- the contents of the rgb color
red small integer -- the mangnitude of the red component
green small integer -- the mangnitude of the green component
blue small integer -- the mangnitude of the blue component

New Sequence Grabber User Interface 1

QuickTime 6 provides a new, improved sequence grabber User Interface (UI),
which includes new settings that make the UI more resizable on all platforms,
thus taking better advantage of available screen space. The new UI also
provides better support for multiple camera devices.

The basic change from previous versions of QuickTime is that now the sequence
grabber dialog is allowed to grow, and you can switch using tabs instead of
drop down for picking the panel, as shown in Figure 13.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

168 New Sequence Grabber User Interface

© Apple Computer, Inc July, 2002

Figure 13 New sequence grabber user interface, with the Compression pane
selected˙

There are also improved source selections in the new UI, as well as other
improvements. Among these are

■ tab-based Audio and Video Settings panels

■ twist-down, list-based Audio and Video Source tabs

■ a Video preview panel that now provides preview options, including
compressed view, vectorscope, and waveform

■ growable windows, with split bars

■ an Image Panel now built dynamically, based on the capabilities of the VDIG

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber User Interface 169
© Apple Computer, Inc July, 2002

■ a Preview panel that now idles using the new event loop mechanism (refer to
“New Carbon Movie Control” (page 69) for more information). This
improves performance on Mac OS X.

In addition, a new sequence grabber sound dialog is provided in QuickTime 6,
as shown in Figure 14.

Figure 14 A new sequence grabber sound dialog, with the Compression pane
selected

You can now record audio with the number of channels, 8 bit and 16 bit,
different from the source. A summary of this information is provided in the
lower left corner of the dialog box.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

170 New Sequence Grabber APIs

© Apple Computer, Inc July, 2002

New Sequence Grabber APIs 1

QuickTime 6 includes a new group of sequence grabber APIs, discussed in this
section.

These new APIs are primarily designed to improve communication between the
sequence grabber and video digitizer components (VDIGs), and thus provide
an improved user experience. High-level users of the sequence grabber will not
need to make changes to their code, though passing new hint flags about what
they are trying to achieve will help the sequence grabber and VDIGs serve them
better.

Types 1

This section describes each new structure that is available in QuickTime 6.

The SGDeviceInputName structure is defined as follows:

struct SGDeviceInputName {
 Str63 name;
 Handle icon;
 long flags;
 long reserved; /* zero*/
};
typedef struct SGDeviceInputName SGDeviceInputName;

enum {
 sgDeviceInputNameFlagInputUnavailable = (1 << 0)
};

struct SGDeviceInputListRecord {
 short count;
 short selectedIndex;
 long reserved; /* zero*/
 SGDeviceInputName entry[1];
};

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber APIs 171
© Apple Computer, Inc July, 2002

typedef struct SGDeviceInputListRecord SGDeviceInputListRecord;
typedef SGDeviceInputListRecord * SGDeviceInputListPtr;
typedef SGDeviceInputListPtr * SGDeviceInputList;

The SGDeviceName structure is re-defined as follows:

struct SGDeviceName {
 Str63 name;
 Handle icon;
 long flags;
 long refCon;
 SGDeviceInputList inputs; /* list of inputs; formerly

reserved to 0*/
};
typedef struct SGDeviceName SGDeviceName;

enum {
 sgDeviceNameFlagDeviceUnavailable = (1 << 0),
 sgDeviceNameFlagShowInputsAsDevices = (1 << 1)
};

The SGDeviceListRecord structure is defined as follows:

struct SGDeviceListRecord {
 short count;
 short selectedIndex;
 long reserved; /* zero*/
 SGDeviceName entry[1];
};
typedef struct SGDeviceListRecord SGDeviceListRecord;
typedef SGDeviceListRecord * SGDeviceListPtr;
typedef SGDeviceListPtr * SGDeviceList;

enum {
 sgDeviceListWithIcons = (1 << 0),
 sgDeviceListDontCheckAvailability = (1 << 1),
 sgDeviceListIncludeInputs = (1 << 2)
};

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

172 New Sequence Grabber APIs

© Apple Computer, Inc July, 2002

The new flag sgDeviceListIncludeInputs is passed to SGGetChannelDeviceList if
the caller desires to get the list of inputs as well as the devices. If this flag is not
passed, the old behavior of just listing devices is retained.

Two new usage flags have also been defined so that your application can
indicate to the sequence grabber (and thus the VDIG) that it is not being used in
a conventional recording mode.

enum {
seqGrabRecord = 1,
seqGrabPreview = 2,
seqGrabPlayDuringRecord = 4,
seqGrabLowLatencyCapture = 8, /* return the freshest frame

possible, for live work
(i.e. videoconferencing, live
broadcast, live image processing)

*/

seqGrabAlwaysUseTimeBase = 16 /* Tell VDIGs to use TimebaseTime
always, rather than creating
uniform frame durations, for more
accurate live sync with audio */

};
typedef unsigned long SeqGrabUsageEnum;

SGSetSettingsSummary 1

Sets what is displayed in the lower left corner of the sequence grabber dialog.

SGSetSettingsSummary (SeqGrabComponent s,
Handle summaryText);

s A sequence grabber component.

summaryText A handle to the summary text.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber APIs 173
© Apple Computer, Inc July, 2002

DISCUSSION

This routine supplies a handle (no length byte) that defines a user-readable
summary of the state of the user’s sequence grabber settings.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

SGGetChannelRefCon 1

Returns a reference constant that was previously set by the corresponding set
call.

SGGetChannelRefCon (SGChannel c,
long * refCon);

c A sequence grabber channel.

refCon A pointer to a long integer.

DISCUSSION

This routine returns the application reference constant set with
SGSetChannelRefCon. Previously, this was only passed to the BottleProcs.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

174 New Sequence Grabber APIs

© Apple Computer, Inc July, 2002

SGGetChannelDeviceAndInputNames 1

Returns the current device and input names.

SGGetChannelDeviceAndInputNames (SGChannel c,
 Str255 outDeviceName,
 Str255 outInputName,
 short * outInputNumber);

c A sequence grabber channel.

outDeviceName

The names for display.

outInputName

The input name for display.

outInputNumber

A pointer to the number of currently selected inputs.

DISCUSSION

This is a utility call that lets you find out the current device and input names,
instead of having to call GetDeviceList and walk it yourself. Pass NIL for
parameters you are not interested in.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber APIs 175
© Apple Computer, Inc July, 2002

SGSetChannelDeviceInputNames 1

ComponentResult SGSetChannelDeviceInputNames (
SGChannel c
short inInputNumber);

c A sequence grabber channel.

inInputNumber

An error specifying if it works or not.

DISCUSSION

A media format independent call for this. Inputs start at 0 here. (Sound starts at
1, VDIGs at 0 in direct calls.) Previously, you had to make a VDIG or
SoundDevice call in order to accomplish this.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

SGSetChannelSettingsStateChanging 1

ComponentResult SGSetChannelSettingsStateChanging(
SGChannel c,
UInt32 inFlags);

c A sequence grabber channel.

inFlags See below.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

176 New Sequence Grabber APIs

© Apple Computer, Inc July, 2002

DISCUSSION

This is a call to bracket SetSettings-related calls, and to give downstream
components an opportunity to deal with the entire settings change in one go.
An application should not normally need to call this because the sequence
grabber settings calls will do this.

enum
{

sgSetSettingsBegin = (1<<0), // SGSetSettings related
 // set calls about to start

sgSetSettingsEnd = (1<<1), // Finished SGSetSettings
 // calls. Get ready to use the new

// settings
};

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

SGPanelGetDITLForSize 1

Returns user interface elements that fit within a specified size panel.

SGPanelGetDITLForSize (SeqGrabComponent ci,
Handle * ditl,
Point * requestedSize);

ci A component instance.

ditl A pointer to a handle provided by the sequence grabber
component.

requestedSize

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber APIs 177
© Apple Computer, Inc July, 2002

The size requested.

DISCUSSION

This routine is used to retrieve user interface elements that fit within a specified
size panel.

If SGPanelGetDITLForSize is unimplemented entirely, the panel is assumed to not
have resizable User Interface elements.

The sequence grabber will interpolate the panel elements between these two
sizes if just these are returned.

enum {
 kSGSmallestDITLSize = -1, /* requestedSize h and v set to this to

retrieve small size*/
 kSGLargestDITLSize = -2 /* requestedSize h and v set to this to

 retrieve large size*/
};

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

SGGrabCompressCompleteBottleProcPtr 1

ComponentResult (*SGGrabCompressCompleteBottleProcPtr)
(SGChannel c,
UInt8 *queuedFrameCount,
SGCompressInfo *ci,
TimeRecord *t,
long refCon);

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

178 New Sequence Grabber APIs

© Apple Computer, Inc July, 2002

c The connection identifier for the channel for this operation. The
sequence grabber provides this value to your
grab-compress–complete function.

queuedFrameCount

A pointer to an 8-bit frame count identifier.

ci A pointer to a SGCompressInfo (IV–2488) structure. When the
operation is complete, the function fills in this structure with
information about the compression operation.

t A pointer to a TimeRecord (IV–2542) structure. When the
operation is complete, the function uses this structure to indicate
when the frame was grabbed.

refCon A reference constant.

DISCUSSION

Note that UInt8 *queuedFrameCount replaces Boolean *done. (0 (==false) still
means no frames, and 1 (==true) one, but if more than one are available, the
number should be returned here.

The value 2 previously meant more than one frame, so some VDIGs may return
2 even if more than 2 are available, and some will still return 1 as they are using
the original definition.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

SGGrabCompressComplete 1

Provides the default behavior for your grab-compress-complete function.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber APIs 179
© Apple Computer, Inc July, 2002

SGGrabCompressComplete (SGChannel c,
UInt8 * queuedFrameCount,
SGCompressInfo * ci,
TimeRecord * tr);

c The connection identifier for the channel for this operation. The
sequence grabber provides this value to your
grab-compress–complete function.

queuedFrameCount

A pointer to an 8-bit frame count identifier.

ci A pointer to an SGCompressInfo (IV–2488) structure. When the
operation is complete, the function fills in this structure with
information about the compression operation.

tr A pointer to a TimeRecord (IV–2542) structure. When the
operation is complete, the function uses this structure to indicate
when the frame was grabbed.

function result See “Error Codes” (IV–2718). Returns noErr if there is no error.

DISCUSSION

Note that UInt8 * queuedFrameCount replaces Boolean *done. 0 (==false) still
means no frames, and 1 (==true) one, but if more than one are available the
number should be returned here. The value 2 previously meant more than one
frame, so some VDIGs may return 2 even if more than 2 are available, and some
will still return 1 as they are using the original definition.

The SGGrabCompressCompleteBottleProc definition has also changed accordingly.
By setting this BottleProc, and calling through to SGGrabCompressComplete, your
application can determine how many frames are currently queued in the VDIG,
which can be useful for real-time processing. Similarly, the VDCompressDone call
has been re-defined. VDIG writers should update to this new model.

VERSION NOTES

Introduced in QuickTime 6.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

180 New Sequence Grabber APIs

© Apple Computer, Inc July, 2002

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

VDCompressDone 1

Determines whether the video digitizer has finished digitizing and compressing
a frame of image data.

VDCompressDone (VideoDigitizerComponent ci,
UInt8 * queuedFrameCount,
Ptr * theData,
long * dataSize,
UInt8 * similarity,
TimeRecord * t);

ci The component instance that identifies your connection to the
video digitizer component. An application obtains this value
from OpenComponent (II–1161) or OpenDefaultComponent (II–1163).

queuedFrameCount

A pointer to an 8-bit frame count identifier.

theData A pointer to a field that is to receive a pointer to the compressed
image data. The digitizer returns a pointer that is valid in the
application’s current memory mode.

dataSize A pointer to a field to receive a value indicating the number of
bytes of compressed image data.

similarity A pointer to a field to receive an indication of the relative
similarity of this image to the previous image in a sequence. A
value of 0 indicates that the current frame is a key frame in the
sequence. A value of 255 indicates that the current frame is
identical to the previous frame. Values from 1 through 254
indicate relative similarity, ranging from very different (1) to
very similar (254). This field is only filled in if the temporal
quality passed in with VDSetCompression (III–2090) is not 0; that
is, if it is not frame-differenced.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber APIs 181
© Apple Computer, Inc July, 2002

t A pointer to a TimeRecord (IV–2542) structure. When the
operation is complete, the digitizer fills in this structure with
information indicating when the frame was grabbed. The time
value stored in this structure is in the time base that the
application sets with VDSetTimeBase (III–2111).

function result See “Error Codes” (IV–2718). Returns noErr if there is no error.

DISCUSSION

Note that UInt8 * queuedFrameCount replaces Boolean* done. 0 (==false) still
means no frames, and 1 (==true) one, but if more than one are available the
number should be returned here. The value 2 previously meant more than one
frame, so some VDIGs may return 2 even if more than 2 are available, and some
will still return 1 as they are using the original definition.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

VDGetDeviceNameAndFlags 1

Returns the name of the input device.

VDGetDeviceNameAndFlags (VideoDigitizerComponent ci,
Str255 outName,
UInt32 * outNameFlags);

ci The component instance that identifies your connection to the
video digitizer component. An application obtains this value
from OpenComponent (II–1161) or OpenDefaultComponent (II–1163).

outName The name of the display name.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

182 New Sequence Grabber APIs

© Apple Computer, Inc July, 2002

outNameFlags

A pointer to flags (see below)

DISCUSSION

This routine is designed to give the VDIG more control over how it is presented
to the user, and to clarify the distinction between devices and inputs.
Historically, the assumption has been that there is one component registered per
device and the component name is displayed. This change lets a component
choose its name after registration. vdDeviceFlagShowInputsAsDevices is meant
for components that register once and support multiple devices.

The User Interface is clearer if these are presented as devices rather than inputs,
and this allows a VDIG to present itself this way without a huge restructuring.
vdDeviceFlagHideDevice is for the kind of VDIG that registers itself, and then
can register a further VDIG for each device.

If no hardware is available, returning this flag will omit it from the list.

As this call is being made, it is also a good time to check for hardware and
register further VDIG components if needed, allowing for lazy initialization
when the application needs to find a VDIG rather than on every launch or
replug.

enum {
 vdDeviceFlagShowInputsAsDevices = (1 << 0), /* Tell the Panel to

promote Inputs to Devices*/
 vdDeviceFlagHideDevice = (1 << 1) /* Omit this Device enitirely from

the list*/
};

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber APIs 183
© Apple Computer, Inc July, 2002

VDCaptureStateChanging 1

Returns a component error.

VDCaptureStateChanging (VideoDigitizerComponent ci,
UInt32 inStateFlags);

ci The component instance that identifies your connection to the
video digitizer component.

inStateFlags See below.

DISCUSSION

It has long been a problem for VDIG writers that the sequence grabber can
make a series of calls, and it is not always clear what the intent is at the higher
level. This call is designed to provide additional information about what is
happening at the sequence grabber level to the VDIG, so it can take this into
account. In particular, the settings bracketing calls are designed for the VDIG to
update a series of parameters without re-initializing. One point here is that the
VDIG can consider the UniqueID call to be more important than the input
number, for example.

The sequence grabber is now more careful when there are multiple VDIGs
available to try to save and restore more information about which one should
be used. It will still pick the closest available VDIG if the exact one is not
available, but it will not stop with the first available.

In addition, the old behavior of aborting a Get/Set settings call part of the way
through if an error is returned has been changed to leave the sequence grabber
in a more predictable state. It also no longer tries to save or restore settings for
SGPanels that report that their hardware is unavailable.

enum {
 vdFlagCaptureStarting = (1 << 0), // Capture is about to start;

allocate bandwidth
 vdFlagCaptureStopping = (1 << 1), // Capture is about to stop; stop

queuing frames
 vdFlagCaptureIsForPreview = (1 << 2),// Capture is just to screen for

 preview purposes
 vdFlagCaptureIsForRecord = (1 << 3) // Capture is going to be

 recorded

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

184 New Sequence Grabber APIs

© Apple Computer, Inc July, 2002

vdFlagCaptureStarting = (1<<0), // Capture is about to start;
allocate bandwidth

vdFlagCaptureStopping = (1<<1), // Capture is about to stop;
stop queuing frames

vdFlagCaptureIsForPreview = (1<<2), // Capture is just to
screen for preview purposes

vdFlagCaptureIsForRecord = (1<<3), // Capture is going to be recorded
vdFlagCaptureLowLatency = (1<<4), // Fresh frames are more important

than delivering every frame --
don't queue too much

vdFlagCaptureAlwaysUseTimeBase = (1<<5),// Use the timebase
for every frame;
don't worry about making
durations uniform

vdFlagCaptureSetSettingsBegin = (1<<6), // A series of calls
are about to be made to
restore settings

vdFlagCaptureSetSettingsEnd = (1<<7) // Finished restoring settings;
any set calls after this
are from the app or UI

};

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

VDGetUniqueIDs 1

Returns a unique identifier for a particular device, which, in the case of a
FireWire device, is the FireWire ID.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Sequence Grabber APIs 185
© Apple Computer, Inc July, 2002

VDGetUniqueIDs (VideoDigitizerComponent ci,
UInt64 * outDeviceID,
UInt64 * outInputID);

ci The component instance that identifies your connection to the
video digitizer component.

outDeviceID A pointer to a 64-bit hardware identifier.

outInputID A pointer to a 64-bit hardware identifier.

DISCUSSION

These UniqueID calls are provided, so that the VDIG can give the sequence
grabber information, enabling it to restore a particular configuration, i.e., choose
a particular device and input from those available––for example, if you need to
restore a specific camera for a set of several hot-plugged FireWire cameras. The
caller can pass NIL if it is not interested in one of the IDs. Returning 0 in an ID
means you don’t have one.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

VDSelectUniqueIDs 1

Selects a particular device––for example, the IDs from the previous call.

VDSelectUniqueIDs (VideoDigitizerComponent ci,
const UInt64 * inDeviceID,
const UInt64 * inInputID);

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

186 New Image Compression APIs

© Apple Computer, Inc July, 2002

ci The component instance that identifies your connection to the
video digitizer component.

inDeviceID A pointer to 64-bit hardware identifier.

inInputID A pointer to 64-bit hardware identifier.

DISCUSSION

Note this is a Select, not a Set. The assumption is that the Unique ID is a
function of the hardware and not modifiable by the calling application. Either a
NIL pointer or 0 in the ID means, don’t care. This should restore the device and
input IDs returned by VDGetUniqueIDs.

return vdDontHaveThatUniqueIDErr if your device doesn’t have a match.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: QuickTimeComponents.h

Carbon status: Supported

New Image Compression APIs 1

The following are Image Compression APIs that are new in QuickTime 6. These
APIs allow compressors to supply the User Interface for their options within the
compression dialog.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Image Compression APIs 187
© Apple Computer, Inc July, 2002

ImageCodecGetDITLForSize 1

Returns DITLs of various size in pixels.

ComponentResult ImageCodecGetDITLForSize (
ComponentInstance ci,
Handle *ditl,
Point *requestedSize);

ci An image codec component instance. You get the sub-dialog
from the component here.

ditl A pointer to a handle. Dialog items are returned here.

requestedSize

The requested size in pixels that fits into the dialog.

DISCUSSION

This routine allows the image codec to return DITLs of various size in pixels.
Two special values for the size, kSGSmallestDITLSize and kSGLargestDITLSize,
request the smallest or largest size of the DITL.

Once you have created the area, you can use the other calls described in this
section to handle the dialog items managed by your panel component.

The codec should return badComponentSelector for sizes it does not implement.
The codec must at a minimum support kSGSmallestDITLSize if it implements
this call.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: ImageCodec.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

188 New Image Compression APIs

© Apple Computer, Inc July, 2002

ImageCodecDITLInstall 1

Installs added items in an image codec settings dialog box before the dialog box
is displayed to the user.

ComponentResult ImageCodecDITLInstall (
ComponentInstance ci,
DialogRef d,
short itemOffset

ci An image codec component instance.

d

itemOffset The offset to your image codec’s first item.

function result

See “Error Codes” (IV–2718). Returns noErr if there is no error.

DISCUSSION

This routine installs added items in an image codec settings dialog box before
the dialog box is displayed to the user.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: ImageCodec.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Image Compression APIs 189
© Apple Computer, Inc July, 2002

ImageCodecDITLEvent 1

Lets a component receive and process dialog events.

ComponentResult ImageCodecDITLEvent (
ComponentInstance ci,
DialogRef d,
short itemOffset,
const EventRecord *theEvent,
short *itemHit,
Boolean *handled);

ci An image codec component instance.

d A dialog reference identifying the settings dialog box.

itemOffset The offset to your panel’s first item in the dialog box.

theEvent A pointer to an EventRecord (IV–2302) structure. This structure
contains information identifying the nature of the event.

itemHit A pointer to a field that is to receive the item number in cases
where your component handles the event. The number returned
is an absolute, not a relative number, so it must be offset by the
itemOffset parameter. handled

handled A pointer to a Boolean value. Set this Boolean value to TRUE if
you handle the event; set it to FALSE if you do not.

function result

See “Error Codes” (IV–2718). Returns noErr if there is no error.
Version Notes

DISCUSSION

This routine allows a component to receive and process dialog events.

VERSION NOTES

Introduced in QuickTime 6.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

190 New Image Compression APIs

© Apple Computer, Inc July, 2002

PROGRAMMING INFO

C interface file: ImageCodec.h

Carbon status: Supported

ImageCodecDITLItem 1

Receives and processes mouse clicks in the image codec settings dialog box.

ComponentResult ImageCodecDITLItem (
ComponentInstance ci,
DialogRef d,
short itemOffset,
short itemNum);

ci An image codec component instance.

d A dialog reference identifying the settings dialog box.

itemOffset The offset to your panel’s first item in the dialog box.

itemNum The item number of the dialog item selected by the user. The
sequence grabber provides an absolute item number. It is your
responsibility to adjust this value to account for the offset to
your panel’s first item in the dialog box.

function result See “Error Codes” (IV–2718). Returns noErr if there is no error.

DISCUSSION

An image codec component calls this function whenever the user clicks an item
in the settings dialog box. Your component may then perform whatever
processing is appropriate, depending upon the item number.

VERSION NOTES

Introduced in QuickTime 6.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Image Compression APIs 191
© Apple Computer, Inc July, 2002

PROGRAMMING INFO

C interface file: ImageCodec.h

Carbon status: Supported

ImageCodecDITLRemove 1

Removes a panel from the image codec settings dialog box.

ComponentResult ImageCodecDITLRemove (
ComponentInstance ci,
DialogRef d,
short itemOffset);

ci An image codec component instance.

d A dialog pointer identifying the settings dialog box.

itemOffset The offset to your panel’s first item in the dialog box.

function result

See “Error Codes” (IV–2718). Returns noErr if there is no error.

DISCUSSION

An image codec component calls this function just before removing your items
from the settings dialog box.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: ImageCodec.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

192 New Image Decompression Manager APIs

© Apple Computer, Inc July, 2002

ImageCodecDITLValidateInput 1

Validates the contents of the user dialog box for an image codec component.

ComponentResult ImageCodecDITLValidateInput (
ComponentInstance ci,
Boolean *ok);

ci An image codec component instance.

ok A pointer to a Boolean value. Set this value to TRUE if the settings
are OK; otherwise, set it to FALSE.

function result See “Error Codes” (IV–2718). Returns noErr if there is no error.

DISCUSSION

The image codec calls this function when the user clicks the OK button. If the
user clicks the Cancel button, the image codec does not call this function. You
indicate whether the settings are acceptable by setting the Boolean value
referred to by the ok parameter. If you set this value to FALSE, the sequence
grabber component ignores the OK button in the dialog box.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: ImageCodec.h

Carbon status: Supported

New Image Decompression Manager APIs 1

This section discusses new Image Decompression Manager APIs introduced in
QuickTime 6.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Image Decompression Manager APIs 193
© Apple Computer, Inc July, 2002

QTGetPixelFormatDepthForImageDescription 1

Returns the corresponding depth value that should be used in image
descriptions.

short QTGetPixelFormatDepthForImageDescription (OSType PixelFormat);

DISCUSSION

Given a pixel format, this function returns the corresponding depth value that
should be used in image descriptions. Such a value is not the literal number of
bits per pixel, but the closest corresponding classic QuickDraw depth:

■ for any pixel format with an alpha channel, 32

■ for grayscale pixel formats of 8 or more bits per pixel, 40

■ for color quantized to 5 or 6 bits per component, 16

■ for all other color pixel formats, 24

GraphicsImportSetImageIndexToThumbnail 1

Looks for a subimage that contains a thumbnail.

ComponentResult GraphicsImportSetImageIndexToThumbnail
(GraphicsImportComponent ci);

DISCUSSION

This routine looks for a subimage that contains a thumbnail. If the function
finds one, it sets the image index to that subimage. If the function does not find
one, it returns noThumbnailFoundErr.

The base graphics importer’s implementation of SetImageIndexToThumbnail
works by looking for the first image index that returns a kQTIndexedImageType
metadata item containing the kQTIndexedImageIsThumbnail tag. Format-specific
graphics importers may override this with more efficient algorithms.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

194 New Image Decompression Manager APIs

© Apple Computer, Inc July, 2002

ImageCodecMergeFloatingImageOntoWindow 1

Draws the current contents of a floating image.

ComponentResult ImageCodecMergeFloatingImageOntoWindow(
ComponentInstance ci,
UInt32 flags);

DISCUSSION

Some hardware acceleration transfer codecs create a “floating image” in front of
the window; when this is deactivated or hidden, whatever was previously
drawn in that section of the window reappears. Such transfer codecs should
implement the MergeFloatingImageOntoWindow call, which draws the current
contents of the floating image onto the window below, so that the floating
image may be deactivated or hidden without the image changing.

ImageCodecRemoveFloatingImage 1

Hides the floating image without having to close the component.

ComponentResult ImageCodecRemoveFloatingImage(
ComponentInstance ci,
UInt32 flags);

Some hardware acceleration transfer codecs create a “floating image” in front of
the window; when this is deactivated or hidden, whatever was previously
drawn in that section of the window reappears. Such transfer codecs should
implement the RemoveFloatingImage call, so that the Image Compression
Manager can ask it to hide the floating image without having to close the
component.

The floating image should be shown again on the next call to DrawBand.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Media Handler APIs For Keyboard Focus 195
© Apple Computer, Inc July, 2002

New Media Handler APIs For Keyboard Focus 1

QuickTime 6 provides three new media handler calls that developers can use to
write media handlers that support keyboard focus. These are

■ MediaRefConSetProperty

■ MediaRefConGetProperty

■ MediaNavigateTargetRefCon

If you want to add interactive capabilities to your application, you need to use
these media handler calls, discussed in this section.

Adding Keyboard Focus Capabilities 1

When authoring the movie, you need to make sure that you add a media
property atom of type kTrackFocusCanEditFlag and set that to TRUE. Then you
should check for the presence of this flag when called via
MediaHasCharacteristic checking on the kCharacteristicProvidesKeyFocus.

You add the kTrackFocusCanEditFlag atom. If this property has been set to TRUE,
the media handler receives the NavigateRefCon and Get/SetRefCon calls.

{
QTAtomContainer mediaProperties;
Boolean canEdit = true;

QTNewAtomContainer(&mediaProperties);
QTInsertChild(mediaProperties, 0, kTrackFocusCanEditFlag, 1, 1,

sizeof(canEdit), &canEdit, NULL);
myErr = SetMediaPropertyAtom(myMedia, mediaProperties);
QTDisposeAtomContainer(mediaProperties);

}

pascal ComponentResult MediaHasCharacteristic(
MediaHandler mh,
OSType characteristic,
Boolean *hasIt)

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

196 New Media Handler APIs For Keyboard Focus

© Apple Computer, Inc July, 2002

{
if (kCharacteristicProvidesKeyFocus == characteristic) {

OSErr err;
Boolean canEdit = false;
QTAtomContainer propertyContainer = nil;

err = GetMediaPropertyAtom (store->media, &propertyContainer);
if ((noErr == err) && (propertyContainer)) {

QTAtom canEditAtom = QTFindChildByIndex(propertyContainer,
kParentAtomIsContainer, kTrackFocusCanEditFlag, 1, nil);

if (canEditAtom)
QTCopyAtomDataToPtr(propertyContainer, canEditAtom,

false, sizeof(Boolean), &canEdit,
nil);

}

if (propertyContainer) (void) QTDisposeAtomContainer
(propertyContainer);

*hasIt = canEdit;
}

...
}

{
QTAtomContainer mediaProperties;
Boolean hasActions = true;

QTNewAtomContainer(&mediaProperties);
QTInsertChild(mediaProperties, 0, kMediaPropertyHasActions, 1, 1,

sizeof(hasActions), &hasActions, NULL);
myErr = SetMediaPropertyAtom(myMedia, mediaProperties);
QTDisposeAtomContainer(mediaProperties);

}

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Media Handler APIs For Keyboard Focus 197
© Apple Computer, Inc July, 2002

MediaHitTestForTargetRefCon 1

Locates the object for hit testing.

ComponentResult MediaHitTestForTargetRefCon (
 MediaHandler mh,
 long flags,
 Point loc,
 long *targetRefCon);

mh A media handler. You can obtain this reference from
GetMediaHandler (I-443).

flags Flags (see below) that define the hit.

loc The location of the mouse.

targetRefCon Returns a reference constant representing an object you’re
interested in. If this reference constant is not 0, your media
handler will receive calls to MediaGetActionsForQTEvent.

function result

See “Error Codes” (IV-2718). Returns noErr if there is no error.

The following flags are set by the Standard Controller, which currently sets
mHitTestImage and mHitTestInvisible before it calls you.

mHitTestBounds
The point may only be within the targetRefCon bounding box.

mHitTestImage
The point must be within the shape of the targetRefCon image.

mHitTestInvisible
An invisible targetRefCon may be hit tested, even if the object is
invisible.

mHitTestIsClick
The hit is a mouse click for codecs that want mouse events.

DISCUSSION

This routine is used to locate the object for hit testing.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

198 New Media Handler APIs For Keyboard Focus

© Apple Computer, Inc July, 2002

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

MediaHitTestTargetRefCon 1

Detects if the mouse click and its release are in the same location, and within the
object.

ComponentResult MediaHitTestTargetRefCon (
 MediaHandler mh,
 long targetRefCon,
 long flags,
 Point loc,
 Boolean *wasHit);

mh A media handler. You can obtain this reference from
GetMediaHandler (I-443).

targetRefCon A reference constant set by the media handler in
MediaHitTestForTargetRefCon.

flags Flags (see below) that define the hit.

loc The location of the mouse.

wasHit A pointer to a Boolean; return TRUE if there was a hit, FALSE
otherwise.

function result

See “Error Codes” (IV-2718). Returns noErr if there is no error.

flags Constants

mHitTestBounds

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Media Handler APIs For Keyboard Focus 199
© Apple Computer, Inc July, 2002

The point may only be within the targetRefCon bounding box.

mHitTestImage

The point must be within the shape of the targetRefCon image.

mHitTestInvisible

An invisible targetRefCon may be hit tested.

mHitTestIsClick

The hit is a mouse click for codecs that want mouse events.

DISCUSSION

This routine is called after MediaGetActionsForQTEvent if a reference constant
was set in MediaHitTestForTargetRefCon.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

MediaGetActionsForQTEvent 1

Returns an Event Handler for your Media Handler.

ComponentResult MediaGetActionsForQTEvent (
 MediaHandler mh,
 QTEventRecordPtr event,
 long targetRefCon,
 QTAtomContainer *container,
 QTAtom *atom);

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

200 New Media Handler APIs For Keyboard Focus

© Apple Computer, Inc July, 2002

mh A media handler. You can obtain this reference from
GetMediaHandler (I-443).

event A pointer to a QTEventRecord (IV-2409) structure.

targetRefCon A reference constant set by the media handler in
MediaHitTestForTargetRefCon.

container An atom container that you can pass back to the standard
controller used for implementing sprite actions.

atom An atom you can pass back to the standard controller used for
implementing sprite actions.

function result

See “Error Codes” (IV-2718). Returns noErr if there is no error.
Returns qtEventWasHandledErr if event was handled by the
media handler qtEventWasHandledErr = -2129.

DISCUSSION

This routine returns an Event Handler for your Media Handler, and is called
with the targetRefcon set in MediaHitTestForTargetRefCon.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

MediaDisposeTargetRefCon 1

Disposes any resources allocated as part of the RefCon.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Media Handler APIs For Keyboard Focus 201
© Apple Computer, Inc July, 2002

ComponentResult MediaDisposeTargetRefCon (
 MediaHandler mh,
 long targetRefCon);

mh A media handler. You can obtain this reference from
GetMediaHandler (I-443).

targetRefCon A reference constant set by the media handler in
MediaHitTestForTargetRefCon.

function result

See “Error Codes” (IV-2718). Returns noErr if there is no error.

DISCUSSION

This routine disposes any resources that your application has allocated as part
of the reference constant.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

MediaNavigateTargetRefCon 1

Locates the object for keyboard focus.

ComponentResult MediaNavigateTargetRefCon (
 MediaHandler mh,
 long navigation,
 long * refCon);

mh A media handler. You can obtain this reference from
GetMediaHandler (I-443).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

202 New Media Handler APIs For Keyboard Focus

© Apple Computer, Inc July, 2002

navigation Flags (see below) that define the direction.

refCon Returns a reference constant representing an object you’re
interested in. If this reference constant is not 0, your media
handler will receive calls to MediaRefConSetProperty and
MediaRefConGetProperty.

function result

See “Error Codes” (IV-2718). Returns noErr if there is no error.

The following flags are set by the Standard Controller, which is determined by
the user’s interaction with the tab and shift keys, and/or mouse.

kRefConNavigationNext
Tabbing direction is forward. If no item currently selection, then
use first.

kRefConNavigationPrevious

Tabbing direction is backward. If no item currently selection,
then use the last.

These constants, which enable navigational direction, are defined as follows:

enum {
kRefConNavigationNext = 0,
kRefConNavigationPrevious = 1

};

DISCUSSION

This routine is locates the object for keyboard focus.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New Media Handler APIs For Keyboard Focus 203
© Apple Computer, Inc July, 2002

Adding Keyboard Navigation and Editable Text Field Support 1

The following are reference constant properties for MediaRefConGetProperty and
MediaRefConSetProperty calls:

enum {
kRefConPropertyCanHaveFocus = 1, /* Boolean */
kRefConPropertyHasFocus = 2, /* Boolean */

};

enum {
kTrackFocusCanEditFlag = 'kedt'

};

MediaRefConSetProperty 1

Sets a new state based on the property type.

ComponentResult MediaRefConSetProperty (
 MediaHandler mh,
 long refCon,
 long propertyType,
 void * propertyValue);

mh A media handler. You can obtain this reference from
GetMediaHandler (I-443).

refCon A reference constant set by the media handler in
MediaNavigateTargetRefCon.

propertyType Property type sent from standard controller.

kRefConPropertyHasFocus = 2, /* Boolean */

propertyValue
Pointer to value to assign. The size based on property type.

function result

See “Error Codes” (IV-2718). Returns noErr if there is no error.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

204 New Media Handler APIs For Keyboard Focus

© Apple Computer, Inc July, 2002

DISCUSSION

This routine is called with the reference constant is set in
MediaNavigateTargetRefCon to set new state based on property type.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

MediaRefConGetProperty 1

Returns the current state based on the property type.

ComponentResult MediaRefConGetProperty (
 MediaHandler mh,
 long refCon,
 long propertyType,
 void * propertyValue);

mh A media handler. You can obtain this reference from
GetMediaHandler (I-443).

refCon A reference constant set by the media handler in
MediaNavigateTargetRefCon.

propertyType Property type sent from standard controller.

kRefConPropertyCanHaveFocus = 1, /* Boolean */

propertyValue

A pointer to a value to assign. The size is based on property
type.

function result

See “Error Codes” (IV-2718). Returns noErr if there is no error.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New QuickTime Restrictions APIs 205
© Apple Computer, Inc July, 2002

DISCUSSION

This routine is called with the reference constant set in
MediaNavigateTargetRefCon to get the current state based on the property type.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: MediaHandlers.h

Carbon status: Supported

New QuickTime Restrictions APIs 1

QuickTime 6 introduces a group of new APIs that provide a mechanism to
preflight operations on content that may be restricted. What this means is that,
by utilizing these calls, you can determine which QuickTime functions are
restricted for the current movie, that is, which operations will fail.

These calls also allow developers to see what restrictions are enforced for a
particular version of QuickTime. Previously, in earlier versions of QuickTime,
there was no mechanism in place to report restrictions on no save or kiosk
movies. Now in QuickTime 6, you can use these new restriction APIs, discussed
in this section.

QTGetMovieRestrictions 1

Returns the restrictions, if any, specified on a given movie.

OSErr QTGetMovieRestrictions (
Movie theMovie,
QTRestrictionSet *outRestrictionSet,
UInt32 *outSeed);

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

206 New QuickTime Restrictions APIs

© Apple Computer, Inc July, 2002

theMovie The movie for this operation.

outRestrictionSet

A pointer to a variable that holds a reference to a restriction set.

outSeed A pointer to a long integer. Each change to the restriction set
will update this value.

DISCUSSION

If there are no restrictions, this routine returns NIL. You can use seed count to
detect changes.

The following is a list of the currently defined restrictions now available in
QTContentRestrictions.h:

enum {
kQTRestrictionClassSave = 'save',
kQTRestrictionSaveDontAddMovieResource = (1L << 0),
kQTRestrictionSaveDontFlatten = (1L << 1),
kQTRestrictionSaveDontExport = (1L << 2),
kQTRestrictionSaveDontExtract = (1L << 3), // don't allow any form of

 // extraction of content

kQTRestrictionClassEdit = 'edit',
kQTRestrictionEditDontCopy = (1L << 0), // disable copy
kQTRestrictionEditDontCut = (1L << 1), // disable cut
kQTRestrictionEditDontPaste = (1L << 2), // disable paste
kQTRestrictionEditDontClear = (1L << 3), // disable clear
kQTRestrictionEditDontModify = (1L << 4), // don't allow modification

 // of content
kQTRestrictionEditDontExtract = (1L << 5) // don't allow any form of

// extraction of content
};

There is also an error called qtOperationNotAuthorizedErr that can be returned if
an operation is performed on content that is restricted. Normally, you should
use the QuickTime Restrictions API described in this section to preflight
operations to determine whether or not to perform the operation. If a restricted
operation is attempted, it will fail and will return this error.

qtOperationNotAuthorizedErr = -2168

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New QuickTime Restrictions APIs 207
© Apple Computer, Inc July, 2002

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

QTGetSupportedRestrictions 1

QTGetSupportedRestrictions (OSType inRestrictionClass,
UInt32 * outRestrictionIDs) ;

Use this routine to determine what restrictions are enforced by the currently
running version of QuickTime.

QTRestrictionsGetInfo 1

Returns the information about the restrictions designated by the specified
restriction set.

OSErr QTRestrictionsGetInfo (
QTRestrictionSet inRestrictionSet,
long *outRestrictionClassCount,
long *outSeed);

inRestrictionSet

The restricted set.

outRestrictionClassCount

A value holding the number of classes currently in the
restriction set.

outSeed A pointer to a long integer. Each change to the restriction set
will update this value.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

208 New QuickTime Restrictions APIs

© Apple Computer, Inc July, 2002

DISCUSSION

If you want to determine all of the restrictions, use this routine to determine the
count.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

QTRestrictionsGetItem 1

Returns the restricted items.

OSErr QTRestrictionsGetItem (QTRestrictionSet inRestrictionSet,
OSType inRestrictionClass,
UInt32 * outRestrictions);

inRestrictionSet

The restricted set.

inRestrictionClass

The restricted class.

outRestrictions

A pointer to a long integer holding flags that indicate individual
restrictions.

DISCUSSION

If you have no restrictions, the flags returned will be 0. If class is not available, it
won’t return an error, but restrictions will be set to 0.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New QuickTime Restrictions APIs 209
© Apple Computer, Inc July, 2002

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

QTCreateUUID 1

Creates a universal unique (UUID)128-bit number.

OSErr QTCreateUUID (
QTUUID * outUUID,
long creationFlags);

outUUID A pointer to the unique universal 128-bit number.

creationFlags

DISCUSSION

This routine is used to create a universal unique identifier.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

210 New APIs For Controlling Memory Usage in Movies

© Apple Computer, Inc July, 2002

QTEqualUUIDs 1

Compares two 128-bit numbers.

Boolean QTEqualUUIDs (const QTUUID * uuid1,
const QTUUID *uuid2);

uuid1 A pointer to the first 128-bit number.

uuid2 A pointer to the second 128-bit number.

DISCUSSION

This routine is used to compare two universal unique identifiers.

VERSION NOTES

Introduced in QuickTime 6.

PROGRAMMING INFO

C interface file: Movies.h

Carbon status: Supported

New APIs For Controlling Memory Usage in Movies 1

QuickTime 6 introduces new APIs for applications that want to exercise very
fine-grained control over how memory is used by movies. Most applications,
however, will not need to use these APIs, which were first introduced in
Mac OS X 10.1, and only work in Mac OS X.

On Mac OS 9, collections of media data (called chunks) that were recently used
are, under certain conditions, allowed to persist in handles in the application
heap with the “purgeable” flag set. If the memory manager needs to reclaim
their memory for other purposes, those handles are automatically emptied. If
QuickTime needs the chunks again before they are emptied, it simply clears the
purgeable flag and uses them, avoiding the need to reload the data.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New APIs For Controlling Memory Usage in Movies 211
© Apple Computer, Inc July, 2002

The Mac OS X Carbon Memory Manager does not currently implement the
purgeable flag, relying instead on the virtual memory system. However, the
concept of a “purgeable chunk” is still valuable for QuickTime, since it
identifies chunks that were recently needed and may be needed again in the
near future (perhaps depending on user action). In Mac OS X 10.1 and later,
QuickTime keeps track of purgeable chunks. If the total amount of memory
occupied by them exceeds a per-application threshold called the purgeable
chunk memory allowance, QuickTime empties chunks until the total size is
under it. This behavior can be turned on and off using the
MediaSetChunkManagementFlags function, and the allowance can be configured
using the MediaSetPurgeableChunkMemoryAllowance function. Should you want to
force QuickTime to empty all purgeable chunks, you can call the
MediaEmptyAllPurgeableChunks function.

MediaSetChunkManagementFlags 1

Sets application-global flags controlling chunk management.

pascal ComponentResult MediaSetChunkManagementFlags (
MediaHandler mh,
UInt32 flags,
UInt32 flagsMask);

Currently the only flag is kEmptyPurgableChunksOverAllowance, which is TRUE by
default.

MediaGetChunkManagementFlags 1

Returns the current settings of chunk management flags.

pascal ComponentResult MediaGetChunkManagementFlags (
MediaHandler mh,
UInt32 *flags);

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

212 New APIs For Controlling Memory Usage in Movies

© Apple Computer, Inc July, 2002

▲ W A R N I N G

Do not call this function under QuickTime 5.0.x. It could
cause a crash.

MediaSetPurgeableChunkMemoryAllowance 1

Configures the maximum amount of memory that QuickTime will allow
purgeable chunks to occupy.

pascal ComponentResult MediaSetPurgeableChunkMemoryAllowance
(MediaHandler mh,
Size allowance);

DISCUSSION

This routine configures the maximum amount of memory that QuickTime will
allow purgeable chunks to occupy. This is an application-global setting.

MediaGetPurgeableChunkMemoryAllowance 1

Returns the current purgeable chunk memory allowance.

pascal ComponentResult MediaGetPurgeableChunkMemoryAllowance
(MediaHandler mh,
Size *allowance);

DISCUSSION

This routine returns the current purgeable chunk memory allowance.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Miscellaneous Changes and Enhancements 213
© Apple Computer, Inc July, 2002

MediaEmptyAllPurgeableChunks 1

Forces QuickTime to empty all purgeable chunks in this application.

pascal ComponentResult MediaEmptyAllPurgeableChunks (MediaHandler mh);

Miscellaneous Changes and Enhancements 1

Change For All Video Output Components 1

In QuickTime 6 and later, all video output components which support the
SetEchoPort call should call QTVideoOutputBaseSetEchoPort on the base video
output component to inform it about the change in echo port.

ComponentResult QTVideoOutputBaseSetEchoPort (
QTVideoOutputComponent vo,
CGrafPtr echoPort);

QuickTime VR 1

Two performance enhancements to QuickTime VR:

■ Cubic previews are generated correctly in Export to Fast Start QTVR.

■ Preview now comes in faster for cubics.

New QuickTime Menu in Windows 1

There is a new QuickTime menu in the Windows system tray. The menu
includes the following items in QuickTime 6:

■ About QuickTime -> Opens the About QuickTime control panel

■ QuickTime Website -> Opens the Apple QuickTime website

■ QuickTime Preferences -> Opens Browser Plug-in control panel

■ QuickTime Info -> Launches QTInfo

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

214 Miscellaneous Changes and Enhancements

© Apple Computer, Inc July, 2002

■ Open QuickTime Player -> Launches QuickTime Player

■ Open Picture Viewer -> Opens picture viewer

■ Check for QuickTime Updates -> Opens Browser Plug-in control panel

■ Favorites -> Lists a hierarchical menu with your favorites

■ Open Recent -> Opens recently opened items

■ Exit QuickTime Task -> Quits qttask

There is also a new item in the control panel: a QuickTime system tray icon. If
unchecked, the tray icon will never appear. If you choose to exit from the menu,
it will exit, and when you reboot your computer, it will reappear.

New Movie Errors API 1

Adds orthogonal errors to a list of errors.

 QTAddMovieError(
Movie addTo,
Component adder,
long errorCode,
QTErrorReplacementPtr stringReplacements);

addTo The movie to add error to.

adder The component which is adding the error.

errorCode The error code being added.

stringReplacements

The list of strings to substitute (in order) for "^1", "^2", etc.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Miscellaneous Changes and Enhancements 215
© Apple Computer, Inc July, 2002

DISCUSSION

This routine is used to add orthogonal errors to a list of errors that will later be
reported (at the end of an import or playback, for example). Errors are stored in
'qter' resources within the component.

The 'qter' resource format is defined as follows:

type 'qter' {
longint = $$Countof(ErrorSpec);
wide array ErrorSpec {
longint; // error code used to find this error
longint // error type

kQuickTimeErrorNotice = 1,
kQuickTimeErrorWarning = 2,
kQuickTimeErrorError = 3;

// In the following strings, ^FILENAME, ^APPNAME, ^0, ^1, etc will be
// replaced as appropriate.

pstring; // main error string
pstring; // explanation error string
pstring; // technical string (not displayed

 // to user except in debug cases)
align long;
};

};

VERSION NOTES

Introduced in QuickTime 6.

MIDI Files Now Imported In Place 1

QuickTime can now import standard MIDI files “in place.” The user is no
longer required to provide a filename and create a movie file when QuickTime
opens a movie through QuickTime Player or functions such as
NewMovieFromFile. The import options––adding silence to the beginning or
end, making the file QuickTime 2 compatible––are no longer available.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

216 QuickTime XML Importers

© Apple Computer, Inc July, 2002

Enabling High Quality on MPEG-4 Video Tracks 1

When High Quality is enabled on a MPEG-4 video track, QuickTime will
post-process the decoded frames.

QuickTime XML Importers 1

QuickTime XML importers create movies based on the contents of certain kinds
of XML files saved with the .mov file extension. XML files with the .mov file
extension are treated by networks and operating systems as QuickTime movies.
For example, these XML files can be embedded in Web pages for the QuickTime
browser plug-in or double-clicked from the desktop to invoke QuickTime
Player.

Because XML is text-based, these XML files can be created by any application
that can output text, such as a text editor or server-side script.

XML importers are invoked automatically when a .mov file is opened in
QuickTime Player, the QuickTime plug-in, or by other applications (using
functions such as NewMovieFromFile or NewMovieFromDataRef). QuickTime
automatically detects the XML header and reads the XML type. If an importer is
available for that XML type, QuickTime attempts to create a movie from it.

To work with QuickTime XML importers, XML files must have the following
initial syntax:

<?xml version="1.0">
<?quicktime type="xxxx/xxxx"?>

where "xxxx/xxxx" is the XML type, such as "application/smil" or
"application/x-quicktime-media-link".

For the movie to open, the XML type must be one for which a QuickTime XML
importer is installed.

There are importers for three XML types currently built into QuickTime.

■ SMIL importer

■ QuickTime media link importer

■ Component preflight importer

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

QuickTime XML Importers 217
© Apple Computer, Inc July, 2002

Note that XML importers were introduced and initially documented as part of
QuickTime 5. This section provides more complete information about their use
and features.

SMIL Importer 1

The SMIL importer opens SMIL files (.smil) that have a .mov file extension or
are delivered over a network with the video/quicktime MIME type. This allows
you to direct SMIL files to QuickTime for display (files with the .smil extension
are commonly handled by multiple applications, and it is hard to predict which
one will be chosen by a given browser or operating system). Note that the XML
header information must be prepended to the SMIL file:

<?xml version="1.0">
<?quicktime type="application/smil"?>

For more information about the QuickTime SMIL importer implementation,
and the logic behind this implementation, refer to

http://developer.apple.com/techpubs/quicktime/qtdevdocs/REF/QT41_HTML/
QT41WhatsNew-13.html

QuickTime Media Link Importer 1

The QuickTime media link importer opens media link files (.qtl) that have a
.mov file extension or video/quicktime MIME type.

QuickTime media link files contain a movie URL and an optional set of
parameters, such as loop and full-screen. When delivered over a network, these
files are normally directed to QuickTime Player, bypassing the QuickTime
browser plug-in because of their file extension (.smil) and MIME type:
"application/x-quicktimeplayer". Note that their MIME type is different from
their XML type, which is "application/x-quicktime-media-link".

The XML importer for QuickTime media links allows you to open these files
using the QuickTime plug-in, because the file extension and MIME type are
now .mov and "video/quicktime". This allows you to specify a movie URL for
the QuickTime plug-in as part of an external text file which can be modified
independently of HTML or any movie. This can be a useful alternative to using
alternate movies or SRC= and QTSRC= .

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

218 QuickTime XML Importers

© Apple Computer, Inc July, 2002

When opened locally from the desktop, rather than over a network or through a
browser, both .mov and .qtl files should open in QuickTime Player. The .qtl file
extension and MIME type are relatively new, however, and not all Windows or
Mac OS systems know what to do with a .qtl file. Changing a file extension
from .qtl to .mov can solve this problem by way of the XML importer.

The syntax of QuickTime media link files is always:

<?xml version="1.0">
<?quicktime type="application/x-quicktime-media-link"?>
<embed src="URL" />

The embed tag in a .qtl file can contain additional parameters, such as loop
and autoplay. It supports only a few of the parameters that can be specified in
the HTML embed tag, however. If you are targeting the QuickTime plug-in,
check to be sure you haven’t included unsupported attributes, such as volume.

Two supported .qtl parameters, fullscreen and quitwhendone, are applicable
only to QuickTime Player. The QuickTime plug-in ignores them.

For more about QuickTime media links, refer to

http://developer.apple.com/techpubs/quicktime/qtdevdocs/REF/whatsnewqt5/
Max.2b.htm

Component Preflight Importer 1

The component preflight importer works with files of XML type "application/
x-qtpreflight". A component preflight XML file should always have the .mov
file extension and "video/quicktime" MIME type.

You can use the component preflight importer to test for the presence of specific
QuickTime components. QuickTime will offer to automatically download and
install any that are needed. This can be a useful filter if your website includes
movies that use components not included in the mimimal QuickTime
installation or components introduced in a recent release of QuickTime.

The syntax for a component preflight XML file is:

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

QuickTime XML Importers 219
© Apple Computer, Inc July, 2002

<?xml version="1.0"?>
<?quicktime type="application/x-qtpreflight"?>
<qtpreflight>
<component type="ctyp" subtype="subt"/>
</qtpreflight>

where "ctyp" and "subt" are the actual four-character codes for a component’s
type and subtype.

The first three lines are always the same. They let QuickTime know that this is
an XML file of type qtpreflight. The last line is always the same. It closes the
<qtpreflight> element. In between is the list of components to check for. You
can have multiple <component /> elements in your file, and QuickTime will test
for all of them.

For example, here’s an XML file that checks for the Sorenson 3 video
decompressor and the QuickTime for Java component:

<?xml version="1.0"?>
<?quicktime type="application/x-qtpreflight"?>
<qtpreflight>
<component type="imdc" subtype="SVQ3"/>
<component type="null" subtype="qtj "/>
</qtpreflight>

Note that the type and subtype are four-character codes. They are case-sensitive
and a blank space is a significant character. These values must be exactly four
characters long, including any spaces.

If any specified components are missing, QuickTime will check to see if they are
available for download on Apple’s servers. QuickTime will then open a dialog
box, either offering to download and install the missing components or
informing the user that the software QuickTime needs in order to play this
movie is not available.

All Apple-supplied components, and all approved third-party download
components, are available on the Apple servers. An “unavailable software”
dialog box is normally the result of an incorrect type or subtype code, or use of
a third-party component not registered with Apple.

Components are typically packaged in groups for download. If a component is
needed, its parent package is downloaded and installed. For example, the text
importer is currently part of the authoring package, so all the authoring

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

220 QuickTime XML Importers

© Apple Computer, Inc July, 2002

components are downloaded and installed if the text importer is needed. While
you need to be aware of this, you should not assume that any particular
component will be downloaded because another is. The organization and
content of download packages is subject to periodic change. It’s a good idea to
test for all the components that you need. Don’t worry; if you specify several
components in the same package, the package downloads only once.

Typical content creators and website developers have no easy way to determine
which components their movies rely on. An application that took a movie or
folder of movies as input, and produced a list of required components as an
output, would be useful for this purpose, but as of this writing no such
application is available.

Following is a list of some components that you might want to check for. Note
that the type field identifies the kind of operation the component performs, and
the subtype generally identifies the kind of data it operates on. For example, all
image decompressors are of type "imdc", and all image compressors are of type
"imco". A JPEG compressor or decompressor is of subtype "jpeg", while a
Sorenson 3 compressor or decompressor is of subtype "SVQ3".

*Not in minimum installation

The component preflight importer opens an empty movie. The user is unlikely
to know what to do with this, so it’s best to open it in an unobtrusive place. One
good solution is to embed it in a Web page in a 2-pixel by 2-pixel rectangle,
which is effectively invisible.

Component Type Subtype

Sorenson 3 video "imdc" "SVQ3"

QDesign Music 2 audio "sdec" "QDM2

MPEG-4 video "imdc" "mp4v"

Lens Flare effect "imdc" "lens"

Blur effect (effects generally)* "imdc" "blur"

Text importer* "eat " "TEXT"

MIDI or QuickTime Music* "mhlr" "musi"

ZyGoVideo video* "imdc" "ZyGo"

QuickTime for Java* "null" "qtj "

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New XML Exporter 221
© Apple Computer, Inc July, 2002

Note
The dialog boxes do not rely on the height and width
allocated to the plug-in on a Web page, so loading the
empty movie in a 2 x 2 rectangle does not affect them.

Writing XML Importers 1

It is certainly possible to write your own XML import components.
Documentation on this is forthcoming.

New XML Exporter 1

QuickTime 6 introduces a new XML exporter––Export to QuickTime Media
Link––which creates a small XML file that contains the URL of a movie. The file
may also contain additional user settings.

XML exporters create various kinds of XML files based on the contents of a
movie. The XML file created may also contain information specific that is to the
exporter or to user settings obtained through a dialog.

The XML file created by the exporter can be treated as a QuickTime movie.
When the file is opened by QuickTime, QuickTime parses the XML, attempts to
open the movie specified in the src field, then play it using the specified
settings.

How It Works 1

The QuickTime media link exporter creates an XML file of type "application/
x-quicktime-media-link". This is a .qtl file of MIME type "application/
x-quicktimeplayer". Note that the XML type and the MIME type are not the
same. The MIME type and file extension are used by browsers and operating
systems to determine what application or plug-in should be used to handle a
file. The XML type tells QuickTime what kind of data the file contains.

You can rename a QuickTime media link file by changing the file extension from
.qtl to .mov. This changes the MIME and file types, but not the XML type.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

222 New XML Exporter

© Apple Computer, Inc July, 2002

Note
A .qtl file is always handled by the QuickTime Player
application, whereas a .mov file is typically handled by the
QuickTime browser plug-in when the file is embedded in a
Web page, and handled by QuickTime Player when
double-clicked from the desktop.

For more information about .qtl files, see “What’s New in QuickTime 5”
available at

http://developer.apple.com/techpubs/quicktime/qtdevdocs/REF/whatsnewqt5/
Max.htm

and “New QuickTime Media Links XML Importer” at

http://developer.apple.com/techpubs/quicktime/qtdevdocs/REF/whatsnewqt5/
Max.2b.htm#pgfId=93760.

Media Link Exporter Settings 1

The QuickTime media link exporter includes the following settings:

■ src (movie URL or path and filename)

■ movie name

■ movie ID

■ sound volume

■ full-screen mode

■ looping

■ autoplay

■ play every frame

■ kiosk mode (disallow saving)

■ controller

■ quit when done (exits QuickTime Player)

■ qtnext (the movie to play next)

■ href (URL to open if a user clicks the movie)

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

New XML Exporter 223
© Apple Computer, Inc July, 2002

Using the Media Link Exporter 1

You can access the media link exporter by choosing Export from the File menu
in QuickTime Player, then choosing Movie to QuickTime Media Link. You can
either click Save, which creates an XML file with the default settings, or click
the Options button to specify the settings yourself. (Note that Export from
QuickTime Player requires QuickTime Pro.)

The QuickTime Media Link Settings dialog is shown in Figure 15.

Figure 15 The QuickTime Media Link Settings dialog in QuickTime Player

■ URL field. You can change the URL if you plan to put the movie on a
different server or if you want the XML file to specify a different movie.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

224 New XML Exporter

© Apple Computer, Inc July, 2002

■ Type field. This allows you to override the XML type. You might do this if
you were writing your own XML importer, but ordinarily this field should be
left blank.

■ Name and ID fields. These allow you to specify a movie name and movie id.
Note that the movie name is not the filename of the movie.

■ Volume slider. This allows you to set the movie sound volume, from 0 to
100%.

■ Fullscreen. This pop-up menu lets you set any of the full-screen modes: half,
normal, double, current, and full.

■ Loop. This pop-up menu lets you set the looping mode.

There are checkboxes for Autoplay, Play every frame, Kiosk mode, Controller,
and Quit when done.

You can enter URLs in the text fields provided for QT Next (the movie to play
after this one) and HREF (the URL to load if a user clicks the movie).

URLs are relative to the movie specified in the src field.

The Output Defaults checkbox writes the values of all settings to the XML file,
even if they are the same as the system defaults. In most cases, however, this
has no effect, because not specifying a setting results in the system default.

The notable exception is the autoplay setting. A movie with no autoplay setting
may or may not autoplay, depending on the user selection in the QuickTime
Settings panel. If you want to be sure that a movie will never autoplay, you
should select Output Defaults so that autoplay="false" will be set explicitly in
the XML file. If you set autoplay="true" it will be set in the XML file regardless
of the Output Defaults setting.

Default Settings 1

By default the src field is set to either the URL or the path and filename of the
current movie. If you open a movie using a URL data reference (“Open URL” in
QuickTime Player), the XML file contains the movie URL. If you open a movie
using a file data reference (“Open” in QuickTime Player), the URL contains a
path and filename.

The XML user settings default to the settings currently stored in the movie,
which may not correspond to the current selections in a running application. An
application may maintain user settings in transient memory, storing them in the

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

MovieQTList Embed Tag Attribute 225
© Apple Computer, Inc July, 2002

movie only when saving. For example, changing the loop setting in QuickTime
Player will not change the exported loop setting unless you save the movie
before exporting.

Applications developers may want to copy all user settings into the movie’s
user data atom before performing an export. All the settings except qtnext can
be set by applications using the QuickTime API. See The QuickTime File Format
for additional information about Movie User Data, available at

http://developer.apple.com/techpubs/quicktime/qtdevdocs/QTFF/qtff.html

Note
User settings can also be stored in a movie using
AppleScript.

Some settings can also be stored using QuickTime Player (volume, loop,
autoplay, and play every frame).

By default, the XML file contains only user settings that have a value different
from QuickTime’s defaults. For example, a movie with no specified user
settings has a controller and a volume of 100%. By default, settings matching
these defaults are not included in the XML file. The XML file would specify the
controller only if it were false and volume only if it were not 100%.

By default, the following settings are not included in the XML file if their values
are as shown:

autoplay="false"
controller="true"
kioskmode="false"
loop="false"
playeveryframe="false"
quitwhendone=false"
volume="100"

MovieQTList Embed Tag Attribute 1

QuickTime movies can contain structured data in QTList format. A QTList has a
user-defined structure, much like a database or an XML file. QuickTime 5 and
later include wired actions that allow a movie to parse a QTList and take

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

226 MovieQTList Embed Tag Attribute

© Apple Computer, Inc July, 2002

actions based on the contents. For example, a QTList can contain a list of audio
files, and the movie can load and play songs from the list based on user
selections.

QuickTime movies can read a properly structured XML file into a QTList, or
exchange XML-structured data between a QTList and a server. This enables a
QuickTime movie to act as the front end of a database, for example, allowing
the user to view or modify records stored on a remote server.

A QuickTime movie can have one QTList for the movie as a whole, as well as
one for each track in the movie.

QuickTime 6 adds a MovieQTList parameter that allows you to pass data into the
movie-level QTList directly from HTML. This lets you specify the default
contents of the movie QTList as part of your Web page. Combined with either
JavaScript or a server-side script, this enables you to dynamically pass data into
a movie when it is opened in a browser.

The MovieQTList parameter is used in the EMBED and OBJECT tags of your Web
pages. For example:

<OBJECT CLASSID="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
CODEBASE="http://www.apple.com/qtactivex/qtplugin.cab"
WIDTH="xx" HEIGHT="yy" >

<PARAM NAME="src" VALUE="my.mov" />
 <PARAM NAME="MovieQTList" VALUE=
 "<myDataBase>

<myRecord>
<lastname>Bailey</lastname>
<firstname>Bill</firstname>
<phone>555-1212</phone>

</myRecord>
 </myDataBase>"

/>

<Embed src=my.mov
height=yy width=xx
MovieQTList=

"<myDataBase>
<myRecord>

<lastname>Bailey</lastname>
<firstname>Bill</firstname>

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

MovieQTList Embed Tag Attribute 227
© Apple Computer, Inc July, 2002

<phone>555-1212</phone>
</myRecord>

</myDataBase>"
/>

</OBJECT>

Note that the XML data is just data––there is no XML header or
meta-information.

Most recent browsers can handle the HTML in the example above, ignoring all
the angle brackets and forward slashes because they occur between quotes.
Some older browsers may become confused, however, and terminate the PARAM
or EMBED tag at the first ">" in the MovieQTList parameter value. You can prevent
this by constructing the QTList data using JavaScript.

For example:

<script language="JavaScript">
embedTag = ' <embed'

+ ' src=\"my.mov\"'
+ ' height=yy width=xx'
+ ' MovieQTList='
+ ' \"<myDataBase>'
+ ' <myRecord>'
+ ' <lastname>Bailey</' + 'lastname>'
+ ' <firstname>Bill</' + 'firstname>'
+ ' <phone>555-1212</' + 'phone>'
+ ' </' + 'myRecord>'
+ ' </' + 'myDataBase>\"'
+ ' /' + '>;

document.writeln(embedTag);
</script>

To use the MovieQTList parameter, you typically add a set of wired actions to
your movie (using either the QuickTime API or a QuickTime editing program
such as LiveStage Pro) that use properties of a QTList. An example would be
loading a child movie using a URL from the movie QTList. You would then
format the data you wish to pass in your HTML so that it conforms both to
proper XML syntax and to the structure of your QTList.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

228 SMIL Meta Tag Support in QuickTime

© Apple Computer, Inc July, 2002

The MovieQTList parameter creates a movie QTList if the movie does not
contain one already. If the movie does contain a movie QTList, the MovieQTList
parameter values overwrite the existing list. This allows you to create a movie
that contains a default list to be used when the movie is viewed outside your
Web pages.

IMPORTANT

Test your HTML carefully. No error message is displayed if
the data is incorrectly formatted for XML or fails to match
the structure of your QTList.

SMIL Meta Tag Support in QuickTime 1

SMIL meta tag support was introduced and initially documented as part of
QuickTime 5. This section provides more complete information about the
properties defined in the SMIL 1.0 specification and those defined by
QuickTime.

In a SMIL document, a set of meta elements can be used to define properties of
the document, such as author, expiration date, a list of keywords, and so on,
and assign values to those properties. Each meta element specifies a single
property/value pair.

The following is an example of a meta element:

<meta name= “foo” content=”35”/>

The name attribute identifies the property defined in this meta element. The
content attribute specifies the value of the property. These two attributes are
required. The id and the skip-content attributes are also allowed in a meta
element. (For more details on these attributes, you should refer to the SMIL 1.0
specification.)

When a SMIL document is imported into QuickTime, properties defined
through the meta elements are converted into movie user data items some of
which are accessible through the movie property window in QuickTime Player.
The properties defined in the SMIL 1.0 and those QuickTime defines are listed
below.

Properties defined in SMIL 1.0:

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

SMIL Meta Tag Support in QuickTime 229
© Apple Computer, Inc July, 2002

■ base

The value of this property determines the base URI for all relative URIs used in
the document. The value given to this element becomes a ‘burl’ user data item
in the imported movie. QuickTime uses the value as the base URL in resolving
relative URLs it encounters in the movie.

■ pics-label or PICS-Label

The value of this property specifies a valid rating label for the document as
defined by PICS. QuickTime currently does not support this property.

■ title

The value of this property contains the title of the presentation. The value of
this property becomes kUserDataName (‘name’) user data item in the imported
movie.

Properties QuickTime defines:

■ name

The value of this property contains the name of the presentation. The value of
this property becomes kUserDataName (‘name’) user data item in the imported
movie. Note that both the name meta data and the title meta data map into the
same user data item.

■ full-name

The value of this property contains the title of the presentation. The value of
this property becomes kUserDataTextFullName(‘©nam’) user data item in the
imported movie. Note the value of this user data item is displayed in the movie
property window of QuickTime Player.

■ author

The value of this property contains the author of the presentation. The value of
this property becomes kUserDataTextAuthor (‘©aut’) user data item in the
imported movie. Note the value of this user data item is displayed in the movie
property window of QuickTime Player.

■ copyright

The value of this property contains the author of the presentation. The value of
this property becomes kUserDataTextCopyright (‘©cpy’) user data item in the
imported movie. Note the value of this user data item is displayed in the movie
property window of QuickTime Player.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

230 JavaScript Support for ActiveX, Netscape 6 and Mozilla

© Apple Computer, Inc July, 2002

■ information

The value of this property contains the author of the presentation. The value of
this property becomes kUserDataTextInformation (‘©inf’) user data item in the
imported movie. Note the value of this user data item is displayed in the movie
property window of QuickTime Player.

■ qt-userdata-xxx

where xxx is appended to a ‘©’ character and interpreted as an annotation user
data tag (or a user data text tag). For example, qt-userdata-swr becomes the
‘©swr’ user data text item. The value of this property contains a piece of
annotation of the presentation.

For more details on user data text items, refer to

http://developer.apple.com/techpubs/quicktime/qtdevdocs/APIREF/SOURCESV/
workingwithmovieuserdata.htm

A list of user data tags can be found at

http://developer.apple.com/techpubs/quicktime/qtdevdocs/APIREF/SOURCESIV/
userdataidentifiers.htm

JavaScript Support for ActiveX, Netscape 6 and Mozilla 1

New in QuickTime 6, the QuickTime ActiveX control for Windows is fully
scriptable using JavaScript.

This means you can now use JavaScript to control QuickTime when Web pages
are viewed using Internet Explorer for Windows, or any other browser that
supports the COM interface to ActiveX controls.

Also new in QuickTime 6, the QuickTime browser plug-in is scriptable using
the XPCOM interface supported by Netscape 6 and later and Mozilla 1.0.

This means you can now use JavaScript to control QuickTime when Web pages
are viewed using Netscape 6 or later, or browsers based on Mozilla 1.0, on both
Mac OS and Windows.

QuickTime is now scriptable from Web pages viewed using any browser that
supports JavaScript and any of the LiveConnect, XPCOM, or COM interfaces.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

JavaScript Support for ActiveX, Netscape 6 and Mozilla 231
© Apple Computer, Inc July, 2002

This includes most current browsers for Windows and Macintosh, with the
notable exception of Internet Explorer for Macintosh, which does not allow
scripting of plug-ins.

Note
The QuickTime browser plug-in has been scriptable using
the LiveConnect interface since QuickTime 4.1, as
documented in “What's New in QuickTime 4.1,” available
at <http://developer.apple.com/techpubs/quicktime/
qtdevdocs/REF/QT41_HTML/QT41WhatsNew-72.html>. This
allowed scripting by Netscape 4 and 5 on both Mac OS and
Windows.

In summary:

■ QuickTime 4.1 is scriptable using Netscape 4 or 5 on Macintosh or Windows.

■ QuickTime 6 adds scriptability using most current browsers on Windows
and Macintosh, including:

■ Netscape 4 and later (including Netscape 6) on Macintosh and Windows
■ Mozilla 1.0 on Macintosh and Windows
■ Internet Explorer for Windows
■ AOL 5 and later for Windows
■ MSN 6

■ Plug-ins are not scriptable using Internet Explorer for Macintosh.

To control a movie through the QuickTime plug-in using JavaScript, you must
include the parameter EnableJavaSript="true" in the movie’s EMBED tag (this
parameter is not needed in the OBJECT tag, but it does no harm there).

Note
You cannot query or control QuickTime from JavaScript
until the browser loads an instance of the plug-in. For
example, you can write a movie’s EMBED tag using
JavaScript, but you cannot use JavaScript to check the
QuickTime version before writing the tag. For this kind of
interaction, you must run the JavaScript from a page that
already has an embedded movie loaded; you can then
write tags to other documents based on QuickTime
properties.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

232 JavaScript Support for ActiveX, Netscape 6 and Mozilla

© Apple Computer, Inc July, 2002

JavaScript treats each embedded QuickTime movie in a Web page as a
separately addressable object. Movies can be identified by name if there is a
NAME parameter in the movie’s EMBED tag and an ID attribute in the movie’s
OBJECT tag. Internet Explorer for Windows uses the ID attribute. Other
browsers use the NAME parameter. Both NAME and ID should be set to the
same value.

For example, to create a movie that can be addressed in JavaScript as "Movie1",
your OBJECT and EMBED tags would look something like this:

<OBJECT classid="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
codebase="http://www.apple.com/qtactivex/qtplugin.cab"
width="180" height="160"
id="movie1" >

<PARAM name="src" value="My.mov">

<EMBED width="180" height="160"
src="My.mov"
name="movie1"
enablejavascript="true">

</EMBED>
</OBJECT>

Movies can also be identified by their ordinal number in the JavaScript embeds[]
array.

An example of usage and syntax, showing JavaScript control of multiple
QuickTime movies using different methods of addressing, can be found on the
QuickTime API website at:

http://developer.apple.com/quicktime/qtdevdocs/REF/QT41_HTML/QT41-80.html

QuickTime exposes dozens of methods to JavaScript, allowing you to control
not only the standard user interface actions, such as playing and stopping a
movie, but also more complex actions, such as layering and compositing. You
can use JavaScript, for example, to enable and disable alternate audio, text, or
video tracks, or change a video track’s graphics mode or a sprite's current
image.

Detailed descriptions of the QuickTime methods and properties available to
JavaScript can be found on the QuickTime API website at:

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Playing Shoutcast or Icecast Streams in QuickTime 233
© Apple Computer, Inc July, 2002

http://developer.apple.com/quicktime/qtdevdocs/REF/QT41_HTML/QT41-72.html

Note
A bug in the current version of Netscape 6 for Mac OS X
causes it not to see the QuickTime plug-in unless a file is
copied from the OS X Internet Plugins folder to the
Netscape 6 components folder. The file is
"nsIQTScriptablePlugin.xpt" and the NS6 components
folder is usually: /Applications/Mozilla1.0/
Mozilla1.0.app/Contents/MacOS/Components/ After the
file is copied, Netscape 6 must be told to refresh its
components list. This can be done either by deleting the
xpti.dat file and restarting Netscape, or by issuing the
JavaScript command: navigator.plugins.refresh().

This bug is marked as fixed for the next release of Netscape and Mozilla.

Playing Shoutcast or Icecast Streams in QuickTime 1

QuickTime 6 allows you to play current Shoutcast or Icecast streams that use
MP3 compression. This section discusses the various features of Shoutcast and
Icecast streams, as well as what you need to know in order to deliver these
streams in real-time over a network. If you are a content author, multimedia
producer, or Webmaster, you should read this section.

Background 1

Shoutcast and Icecast use a modified form of http to deliver MP3 audio in
real-time over a network. This is a popular and inexpensive way to deliver
radio over the Internet. It is especially popular with small broadcasters, as it
does not require the server to have a registered domain name, just an IP
address. It can deliver a live stream or a playlist of recordings. On a Macintosh,
you can tune into hundreds of these streams by clicking the radio tower button
in iTunes. There are also several Shoutcast players for Windows, such as
WinAmp.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

234 Playing Shoutcast or Icecast Streams in QuickTime

© Apple Computer, Inc July, 2002

Shoutcast and Icecast in QuickTime 1

QuickTime 4 introduced support for playing Shoutcast and Icecast streams from
QuickTime Player, the QuickTime browser plug-in, and QuickTime applications
programs. Support for .pls playlists was added as part of QuickTime 5. These
features were never fully documented, however, and recent changes to the
Shoutcast/Icecast protocol make current streams unplayable by these earlier
versions of QuickTime.

There are three ways to open an Icecast or Shoutcast stream using QuickTime:

1. Use QuickTime Player to open a URL or a playlist.

2. Embed the URL of a stream or playlist in a Web page.

3. Open a URL or playlist from your application.

Opening Icecast or Shoutcast URLs 1

Whether you are using QuickTime Player, the QuickTime browser plug-in, or
application code, you need to understand how QuickTime handles Icecast and
Shoutcast URLs.

The URL of a typical Icecast or Shoutcast stream takes the form:

http://Server[/path] [/file]:port

or

http://Server/path/file.pls

Note
The port number is commonly in the 8000-8999 range, but
it can be any port number designated by the server.

Many Shoutcast and Icecast servers do not have their own domain names.
Consequently, the URL is commonly in the form:

http://nnn.nnn.nnn.nnn:XXXX

where nnn.nnn.nnn.nnn is the IP address of the server, and XXXX is the port
number.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Playing Shoutcast or Icecast Streams in QuickTime 235
© Apple Computer, Inc July, 2002

If the URL ends in a .pls filename, you can open the stream using QuickTime
just as you would for any non-movie file that QuickTime can play (such as an
.aiff file, for example).

If the URL does not end in a .pls filename, you must change the protocol from
http:// to icy:// for QuickTime to recognize it as an Icecast or Shoutcast
stream.

For example, to access

http://ItsReggae.com:8004

tell QuickTime to open

icy://ItsReggae.com:8004

whereas to access

http://www.ItsReggae.com/listen.pls

just use the unmodified URL.

As an alternative to changing URLs to icy:// protocol, you can create a local
.pls playlist that lists one or more stream URLs. These URLs do not need to be
changed from http:// to icy://. The fact that they reside in a .pls file tells
QuickTime all it needs to know.

Playlists take the format:

[playlist]
numberofentries=<n>
File1=<uri>
Title1=<title>
Length1=<length or -1>
File2=<uri>
Title2=<title>
Length2=<length or -1>
...

The Title field is optional.

The Length field is either the length of the recording in seconds or -1
(unspecified or live stream).

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

236 Playing Shoutcast or Icecast Streams in QuickTime

© Apple Computer, Inc July, 2002

For example, for a single live stream, the .pls file might look like this:

[playlist]
NumberOfEntries=1
File1=http://itsreggae.com:8004/
length=-1

Playing Icecast or Shoutcast Streams
in QuickTime Player 1

Use the Open URL menu command to open a stream directly. Be sure to change
the URL protocol from http:// to icy:// as described previously.

You can open a .pls file from QuickTime player using the Open menu
command, the Open URL menu command, or by dragging and dropping.

Playing Icecast or Shoutcast Streams
in the QuickTime Browser Plug-in 1

The QuickTime plug-in is not normally registered to handle the icy:// protocol
or .pls file type. To direct a Shoutcast or Icecast stream to the QuickTime
plug-in, you must use the QTSRC parameter in your EMBED tag. The SRC
parameter should point to a file that QuickTime is always registered for, such as
a .qtif (QuickTime image) or .mov (QuickTime movie). This file is downloaded
by the browser, so it should be small, but it is not displayed by QuickTime.
QuickTime knows by the QTSRC parameter that you want to play something else.

Note
The OBJECT tag calls for the QuickTime plug-in explicitly,
so the QTSRC parameter is not required. You may want to
include it, however, so that your EMBED and OBJECT tags
have the same parameters, or this may simply occur if you
use an automated tool that creates OBJECT tags from your
EMBED tags.

Here is an example of the HTML you would use to play a Shoutcast or Icecast
stream from a Web page using the QuickTime browser plug-in, assuming the
URL of the stream is "http://itsreggae.com:8004/"

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

Playing Shoutcast or Icecast Streams in QuickTime 237
© Apple Computer, Inc July, 2002

<OBJECT CLASSID="clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B"
 CODEBASE="http://www.apple.com/qtactivex/qtplugin.cab"
 WIDTH="320" HEIGHT="16" >

 <PARAM NAME="src" VALUE="icy://itsreggae.com:8004" >
 <PARAM NAME="autoplay" VALUE="true" >

<EMBED PLUGINSPAGE="http://www.apple.com/quicktime/download/"
 SRC="UNeedQT.qtif" TYPE="image/x-quicktime"
 WIDTH="320" HEIGHT="16"
 QTSRC="icy://itsreggae.com:8004"
 AUTOPLAY="true" >
 </EMBED>
</OBJECT>

As described previously, you must substitute the icy:// protocol identifier for
the http:// protocol in the URL of a Shoutcast or Icecast stream.

No such substitution is required for (or inside) .pls files, but you must still use
the EMBED’s SRC parameter to direct the browser to a QuickTime file, and the
QTSRC parameter to pass the actual file to QuickTime. The HTML is essentially
identical to the example just shown, substituting

http://www.ItsReggae.com/listen.pls

for

icy://itsreggae.com:8004

Playing Icecast or Shoutcast Streams
Using the QuickTime API 1

You can open an Icecast or Shoutcast stream, or a .pls playlist file, from within
QuickTime applications. The simplest method is to use NewMovieFromFile or
NewMovieFromDataRef to create a playable movie from the file or stream. In the
case of a .pls file, the data reference might be a file alias or a URL. In the case of
a stream, the data reference will normally be a URL.

Again, as described previously, you must substitute "icy://" for "http://" in the
URL of a stream. Do this only for streams, not for .pls files.

D E V E L O P E R D O C U M E N T A T I O N

What’s New in QuickTime 6

238 Playing Shoutcast or Icecast Streams in QuickTime

© Apple Computer, Inc July, 2002

This creates a movie with a streaming track. Play it as you would any streaming
movie.

239

© Apple Computer, Inc. July, 2002

A P P E N D I X A

Document Revision
History A

The following is a change log of this document.

Table A-1 QuickTime 6 revision history

Version Notes

06/04/02 Preliminary draft completed for posting on Apple’s QuickTime API website at
http://developer.apple.com/techpubs/quicktime/.

Draft discusses new features, enhancements, and changes in the QuickTime 6
Public Preview software release.

06/18/02 Updated draft completed for Jaguar release of Mac OS X.

07/17/02 Release for GM version of QuickTime 6.

Figure A-0
Listing A-0
Table A-0

A P P E N D I X A

Document Revision History

240

 © Apple Computer, Inc. July, 2002

	What’s New in QuickTime�6
	Using Gestalt to Get the QuickTime Version
	Documentation and Other Resources
	Bug Reporting
	Installing QuickTime 6
	Summary of Changes and Enhancements
	Enhancements
	Changes
	Updates
	For Web Developers

	Support for MPEG-4
	Background
	MPEG-1 and QuickTime
	MPEG-4 and QuickTime
	MPEG-4 File Format and QuickTime
	Inside the QuickTime File Format
	MPEG-4 Web Resources
	Acronyms and Terms for Understanding MPEG-4
	Acronyms and Terms Specific to MPEG-4
	Other Useful Terms

	Working with MPEG-4 Files
	How The Process Works
	New Dialogs for Handling MP4 Files

	New Video Codec for MPEG-4
	ISMA and Definitions of Profile 0
	Profiles and Levels Defined
	ISMA Profile 0
	ISMA Profile 1
	3GPP (Third Generation Partnership Project)

	Gamma Correction
	Additional Dialog for MPEG-4 Video Compression
	Summary

	MPEG-4 Audio Support
	Defining AAC
	QuickTime AAC Encoder
	QuickTime AAC Decoder

	Native MPEG-4 Streaming
	MPEG-4 and Web Developers
	Ways To Use MPEG-4 In QuickTime
	Why Use MPEG-4 On The Web?
	Creating QuickTime Movies With MPEG-4 Compression
	Creating .mp4 Files
	Playing .mp4 Files in QuickTime
	Example: Playing .mp4 files over the Web

	ISO Compliance

	RTSP Instant-On Enhancement to Streaming
	User Interface Changes
	JPEG 2000 Support
	Flash 5 Support
	New Flash Media Handler
	Flash Movie Importer
	New Flash Properties Info Panel
	Controlling Mouse Capturing Setting

	New APIs for Tasking QuickTime
	The Idle Manager APIs
	Derived Media Handlers
	Three Useful Idle Manager Calls
	General Purpose Idle Manager API
	Data Handlers
	Movie Importers

	New Carbon Movie Control
	Background
	How It Works––An Event Target
	Providing Time to Movies
	Support for Editing
	Interface
	Access to Underpinnings

	Sprite API Changes
	Loading Images into a Sprite Track
	New Sprite APIs
	Sprite Hit-Testing Mode
	Controlling Hit-Testing Mode of an Individual Sprite
	Controlling Hit-Testing Mode of a Sprite Track
	Handling Mouse Clicks

	Sprite Track Setting Enhancements
	Limited Control of Offscreen Bit Depth
	New Preferred Bit Depth Info Panel
	Switching Between Modes
	A New Sprite Track Property
	Using the SpriteSetSpriteProperty API

	New Wired Actions and Operands
	New Sprite Actions
	New Sprite Operands
	New Wired Actions and Operands for Chapter Lists
	Going To a Chapter by Index
	Getting the Name and the Index of a Chapter
	New Wired Actions and Operands for Sprites and Sprite Tracks
	Sprite Hit Testing Property, Actions, and Operands

	Miscellaneous Wired Actions and Operands
	kQTEventKeyUp Event Type Added
	Random Seed
	QTVR Object Actions and Operands

	Additional New Actions and Operands

	VBR Sound Compression Support
	Background
	QuickTime 6 VBR Support
	Some Techniques For Compressing VBR Audio
	Using the Standard Sound Compression Component and VBR Compression
	Audio File Formats and VBR Compression
	Doing Something with VBR Audio Data

	New Tween Component API
	Changes to Effects Dialog
	Custom Effect Controls
	New Behavior Flag kCustomControl Added
	Using pdActionCustomNewControlControl to Create New Custom Controls
	Displaying Text Properly in Application Windows
	Using pdActionCustomHandleEvent To Process Events
	Using pdActionCustomSetFocus to Set or Advance Current Focus
	Using pdActionCustomSetEditMenu To Locate The Edit Menu
	Using pdActionCustomSetPreviewPicture To Preview Information
	Using pdActionCustomGetEnableValue to Enable or Disable Other Controls
	Using pdActionCustomSetSampleTime to Specify Duration and Start Time
	Using pdActionCustomDoEditCommand to Handle Edit Commands

	QuickTime Effects Classes
	Major Class
	Minor Class

	QuickTime Effects Presets
	Atom Contents
	Example Effect 'atms' Resource

	None Codec Enhancements
	Additional Still Image Metadata Support in Mac OS 9 and Windows
	Indexed Image Types
	Alpha Modes
	Extracted TIFF and Exif Metadata

	New APIs For Creating Exif Files
	Improved Movie Toolbox Support for Data Handlers
	Background
	Data Handlers and the New QuickTime APIs
	OpenADataHandler Extended
	Advanced APIs

	New User Data APIs
	QuickTime for Java Enhancements
	Support for JDK 1.4
	New JQTCanvas
	New QTVR Authoring Classes
	Improved QuickTime Client Streaming Support
	New Sprite Handler APIs

	AppleScript Changes
	Recordability
	Terminology Changes
	New Commands
	Enhanced Commands
	New Properties
	New Classes

	New Sequence Grabber User Interface
	New Sequence Grabber APIs
	Types

	New Image Compression APIs
	New Image Decompression Manager APIs
	New Media Handler APIs For Keyboard Focus
	Adding Keyboard Focus Capabilities
	Adding Keyboard Navigation and Editable Text Field Support

	New QuickTime Restrictions APIs
	New APIs For Controlling Memory Usage in Movies
	Miscellaneous Changes and Enhancements
	Change For All Video Output Components
	QuickTime VR
	New QuickTime Menu in Windows
	New Movie Errors API
	MIDI Files Now Imported In Place
	Enabling High Quality on MPEG-4 Video Tracks

	QuickTime XML Importers
	SMIL Importer
	QuickTime Media Link Importer
	Component Preflight Importer
	Writing XML Importers

	New XML Exporter
	How It Works
	Media Link Exporter Settings
	Using the Media Link Exporter
	Default Settings

	MovieQTList Embed Tag Attribute
	SMIL Meta Tag Support in QuickTime
	JavaScript Support for ActiveX, Netscape 6 and Mozilla
	Playing Shoutcast or Icecast Streams in QuickTime
	Background
	Shoutcast and Icecast in QuickTime
	Opening Icecast or Shoutcast URLs
	Playing Icecast or Shoutcast Streams in QuickTime Player
	Playing Icecast or Shoutcast Streams in the QuickTime Browser Plug-in
	Playing Icecast or Shoutcast Streams Using the QuickTime API

	Document Revision History

